A parametric study for enabling reactivity controlled compression ignition (RCCI) operation in diesel engines at various engine loads
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2016.04.095
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Desantes, José M. & Benajes, Jesús & García, Antonio & Monsalve-Serrano, Javier, 2014. "The role of the in-cylinder gas temperature and oxygen concentration over low load reactivity controlled compression ignition combustion efficiency," Energy, Elsevier, vol. 78(C), pages 854-868.
- Jeftić, Marko & Zheng, Ming, 2015. "A study of the effect of post injection on combustion and emissions with premixing enhanced fueling strategies," Applied Energy, Elsevier, vol. 157(C), pages 861-870.
- Fraioli, Valentina & Mancaruso, Ezio & Migliaccio, Marianna & Vaglieco, Bianca Maria, 2014. "Ethanol effect as premixed fuel in dual-fuel CI engines: Experimental and numerical investigations," Applied Energy, Elsevier, vol. 119(C), pages 394-404.
- Asad, Usman & Kumar, Raj & Zheng, Ming & Tjong, Jimi, 2015. "Ethanol-fueled low temperature combustion: A pathway to clean and efficient diesel engine cycles," Applied Energy, Elsevier, vol. 157(C), pages 838-850.
- Han, Sangwook & Kim, Jaeheun & Bae, Choongsik, 2014. "Effect of air–fuel mixing quality on characteristics of conventional and low temperature diesel combustion," Applied Energy, Elsevier, vol. 119(C), pages 454-466.
- Guerry, E. Scott & Raihan, Mostafa S. & Srinivasan, Kalyan K. & Krishnan, Sundar R. & Sohail, Aamir, 2016. "Injection timing effects on partially premixed diesel–methane dual fuel low temperature combustion," Applied Energy, Elsevier, vol. 162(C), pages 99-113.
- Molina, S. & García, A. & Pastor, J.M. & Belarte, E. & Balloul, I., 2015. "Operating range extension of RCCI combustion concept from low to full load in a heavy-duty engine," Applied Energy, Elsevier, vol. 143(C), pages 211-227.
- Benajes, Jesús & Molina, Santiago & García, Antonio & Monsalve-Serrano, Javier, 2015. "Effects of low reactivity fuel characteristics and blending ratio on low load RCCI (reactivity controlled compression ignition) performance and emissions in a heavy-duty diesel engine," Energy, Elsevier, vol. 90(P2), pages 1261-1271.
- Park, Su Han & Yoon, Seung Hyun & Lee, Chang Sik, 2014. "Bioethanol and gasoline premixing effect on combustion and emission characteristics in biodiesel dual-fuel combustion engine," Applied Energy, Elsevier, vol. 135(C), pages 286-298.
- Yang, Bo & Xi, Chengxun & Wei, Xing & Zeng, Ke & Lai, Ming-Chia, 2015. "Parametric investigation of natural gas port injection and diesel pilot injection on the combustion and emissions of a turbocharged common rail dual-fuel engine at low load," Applied Energy, Elsevier, vol. 143(C), pages 130-137.
- Zhou, D.Z. & Yang, W.M. & An, H. & Li, J., 2015. "Application of CFD-chemical kinetics approach in detecting RCCI engine knocking fuelled with biodiesel/methanol," Applied Energy, Elsevier, vol. 145(C), pages 255-264.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ganesh, Duraisamy & Ayyappan, P.R. & Murugan, Rangasamy, 2019. "Experimental investigation of iso-butanol/diesel reactivity controlled compression ignition combustion in a non-road diesel engine," Applied Energy, Elsevier, vol. 242(C), pages 1307-1319.
- Thomas, Justin Jacob & Sabu, V.R. & Nagarajan, G. & Kumar, Suraj & Basrin, G., 2020. "Influence of waste vegetable oil biodiesel and hexanol on a reactivity controlled compression ignition engine combustion and emissions," Energy, Elsevier, vol. 206(C).
- Xu, Guangfu & Duan, Huiquan & Cai, Yikang & Li, Yaopeng & Jia, Ming, 2023. "Potential of the reverse-reactivity controlled compression ignition (R-RCCI) combustion for maintaining ultra-low emissions and enhanced thermal efficiency," Energy, Elsevier, vol. 280(C).
- Ahmadi, Rouhollah & Hosseini, S. Mohammad, 2018. "Numerical investigation on adding/substituting hydrogen in the CDC and RCCI combustion in a heavy duty engine," Applied Energy, Elsevier, vol. 213(C), pages 450-468.
- Pedrozo, Vinícius B. & Zhao, Hua, 2018. "Improvement in high load ethanol-diesel dual-fuel combustion by Miller cycle and charge air cooling," Applied Energy, Elsevier, vol. 210(C), pages 138-151.
- Serdar Halis & Hamit Solmaz & Seyfi Polat & H. Serdar Yücesu, 2023. "Numerical Investigation of a Reactivity-Controlled Compression Ignition Engine Fueled with N-Heptane and Iso-Octane," Sustainability, MDPI, vol. 15(13), pages 1-17, July.
- Navid Kousheshi & Mortaza Yari & Amin Paykani & Ali Saberi Mehr & German F. de la Fuente, 2020. "Effect of Syngas Composition on the Combustion and Emissions Characteristics of a Syngas/Diesel RCCI Engine," Energies, MDPI, vol. 13(1), pages 1-19, January.
- Li, Jing & Ling, Xiang & Liu, Deng & Yang, Wenming & Zhou, Dezhi, 2018. "Numerical study on double injection techniques in a gasoline and biodiesel fueled RCCI (reactivity controlled compression ignition) engine," Applied Energy, Elsevier, vol. 211(C), pages 382-392.
- Li, Zilong & Zhang, Yaoyuan & Huang, Guan & Zhao, Wenbin & He, Zhuoyao & Qian, Yong & Lu, Xingcai, 2020. "Control of intake boundary conditions for enabling clean combustion in variable engine conditions under intelligent charge compression ignition (ICCI) mode," Applied Energy, Elsevier, vol. 274(C).
- D.F. Chuahy, Flavio & Kokjohn, Sage L., 2019. "Solid oxide fuel cell and advanced combustion engine combined cycle: A pathway to 70% electrical efficiency," Applied Energy, Elsevier, vol. 235(C), pages 391-408.
- Jia, Guorui & Wang, Hu & Tong, Laihui & Wang, Xiaofeng & Zheng, Zunqing & Yao, Mingfa, 2017. "Experimental and numerical studies on three gasoline surrogates applied in gasoline compression ignition (GCI) mode," Applied Energy, Elsevier, vol. 192(C), pages 59-70.
- Rahnama, Pourya & Paykani, Amin & Reitz, Rolf D., 2017. "A numerical study of the effects of using hydrogen, reformer gas and nitrogen on combustion, emissions and load limits of a heavy duty natural gas/diesel RCCI engine," Applied Energy, Elsevier, vol. 193(C), pages 182-198.
- Pachiannan, Tamilselvan & Zhong, Wenjun & Rajkumar, Sundararajan & He, Zhixia & Leng, Xianying & Wang, Qian, 2019. "A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Pachiannan, Tamilselvan & Zhong, Wenjun & Rajkumar, Sundararajan & He, Zhixia & Leng, Xianying & Wang, Qian, 2019. "A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
- Han, Weiqiang & Li, Bolun & Pan, Suozhu & Lu, Yao & Li, Xin, 2018. "Combined effect of inlet pressure, total cycle energy, and start of injection on low load reactivity controlled compression ignition combustion and emission characteristics in a multi-cylinder heavy-d," Energy, Elsevier, vol. 165(PB), pages 846-858.
- Li, Jing & Yang, Wenming & Zhou, Dezhi, 2017. "Review on the management of RCCI engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 65-79.
- Masurier, J.-B. & Foucher, F. & Dayma, G. & Dagaut, P., 2015. "Ozone applied to the homogeneous charge compression ignition engine to control alcohol fuels combustion," Applied Energy, Elsevier, vol. 160(C), pages 566-580.
- Mikulski, Maciej & Balakrishnan, Praveen Ramanujam & Hunicz, Jacek, 2019. "Natural gas-diesel reactivity controlled compression ignition with negative valve overlap and in-cylinder fuel reforming," Applied Energy, Elsevier, vol. 254(C).
- Yousefi, Amin & Guo, Hongsheng & Birouk, Madjid & Liko, Brian, 2019. "On greenhouse gas emissions and thermal efficiency of natural gas/diesel dual-fuel engine at low load conditions: Coupled effect of injector rail pressure and split injection," Applied Energy, Elsevier, vol. 242(C), pages 216-231.
- Pedrozo, Vinícius B. & May, Ian & Dalla Nora, Macklini & Cairns, Alasdair & Zhao, Hua, 2016. "Experimental analysis of ethanol dual-fuel combustion in a heavy-duty diesel engine: An optimisation at low load," Applied Energy, Elsevier, vol. 165(C), pages 166-182.
- Jin, Tai & Wu, Yunchao & Wang, Xujiang & Luo, Kai H. & Lu, Tianfeng & Luo, Kun & Fan, Jianren, 2019. "Ignition dynamics of DME/methane-air reactive mixing layer under reactivity controlled compression ignition conditions: Effects of cool flames," Applied Energy, Elsevier, vol. 249(C), pages 343-354.
- Liu, Bolan & Zhang, Fujun & Zhao, Changlu & An, Xiaohui & Pei, Haijun, 2016. "A novel lambda-based EGR (exhaust gas recirculation) modulation method for a turbocharged diesel engine under transient operation," Energy, Elsevier, vol. 96(C), pages 521-530.
- Zhang, Qiang & Ogren, Ryan M. & Kong, Song-Charng, 2016. "A comparative study of biodiesel engine performance optimization using enhanced hybrid PSO–GA and basic GA," Applied Energy, Elsevier, vol. 165(C), pages 676-684.
- Jiaqiang, E & Zhao, Xiaohuan & Xie, Longfu & Zhang, Bin & Chen, Jingwei & Zuo, Qingsong & Han, Dandan & Hu, Wenyu & Zhang, Zhiqing, 2019. "Performance enhancement of microwave assisted regeneration in a wall-flow diesel particulate filter based on field synergy theory," Energy, Elsevier, vol. 169(C), pages 719-729.
- Raza, Mohsin & Wang, Hu & Yao, Mingfa, 2019. "Numerical investigation of reactivity controlled compression ignition (RCCI) using different multi-component surrogate combinations of diesel and gasoline," Applied Energy, Elsevier, vol. 242(C), pages 462-479.
- Martín, Jaime & Novella, Ricardo & García, Antonio & Carreño, Ricardo & Heuser, Benedikt & Kremer, Florian & Pischinger, Stefan, 2016. "Thermal analysis of a light-duty CI engine operating with diesel-gasoline dual-fuel combustion mode," Energy, Elsevier, vol. 115(P1), pages 1305-1319.
- Mikulski, Maciej & Bekdemir, Cemil, 2017. "Understanding the role of low reactivity fuel stratification in a dual fuel RCCI engine – A simulation study," Applied Energy, Elsevier, vol. 191(C), pages 689-708.
- Wang, Yang & Wei, Lixia & Yao, Mingfa, 2016. "A theoretical investigation of the effects of the low-temperature reforming products on the combustion of n-heptane in an HCCI engine and a constant volume vessel," Applied Energy, Elsevier, vol. 181(C), pages 132-139.
- Pedrozo, Vinícius B. & May, Ian & Zhao, Hua, 2017. "Exploring the mid-load potential of ethanol-diesel dual-fuel combustion with and without EGR," Applied Energy, Elsevier, vol. 193(C), pages 263-275.
- Ahmad, Zeeshan & Kaario, Ossi & Qiang, Cheng & Larmi, Martti, 2021. "Effect of pilot fuel properties on lean dual-fuel combustion and emission characteristics in a heavy-duty engine," Applied Energy, Elsevier, vol. 282(PA).
- Mahabadipour, Hamidreza & Srinivasan, Kalyan K. & Krishnan, Sundar R., 2017. "A second law-based framework to identify high efficiency pathways in dual fuel low temperature combustion," Applied Energy, Elsevier, vol. 202(C), pages 199-212.
- Benajes, Jesús & García, Antonio & Pastor, José Manuel & Monsalve-Serrano, Javier, 2016. "Effects of piston bowl geometry on Reactivity Controlled Compression Ignition heat transfer and combustion losses at different engine loads," Energy, Elsevier, vol. 98(C), pages 64-77.
- Wei Tian & Hongchuan Zhang & Lenian Wang & Zhiqiang Han & Wenbin Yu, 2020. "Effect of Premixed n-Butanol Ratio on the Initial Stage of Combustion in a Light-Duty Butanol/Diesel Dual-Fuel Engine," Energies, MDPI, vol. 13(17), pages 1-10, August.
More about this item
Keywords
Reactivity controlled compression ignition (RCCI); Operating range expansion; Parametric study; Load-limiting factors; Diesel engine;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:175:y:2016:i:c:p:389-402. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.