Numerical study on double injection techniques in a gasoline and biodiesel fueled RCCI (reactivity controlled compression ignition) engine
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2017.11.062
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Mikulski, Maciej & Bekdemir, Cemil, 2017. "Understanding the role of low reactivity fuel stratification in a dual fuel RCCI engine – A simulation study," Applied Energy, Elsevier, vol. 191(C), pages 689-708.
- Li, Yaopeng & Jia, Ming & Liu, Yaodong & Xie, Maozhao, 2013. "Numerical study on the combustion and emission characteristics of a methanol/diesel reactivity controlled compression ignition (RCCI) engine," Applied Energy, Elsevier, vol. 106(C), pages 184-197.
- Chao, Yu & Zhi, Wang & Jianxin, Wang, 2014. "Sequenced combustion characteristics, emission and thermal efficiency in gasoline homogeneous charge induced ignition," Applied Energy, Elsevier, vol. 124(C), pages 343-353.
- Paykani, Amin & Kakaee, Amir-Hasan & Rahnama, Pourya & Reitz, Rolf D., 2015. "Effects of diesel injection strategy on natural gas/diesel reactivity controlled compression ignition combustion," Energy, Elsevier, vol. 90(P1), pages 814-826.
- Zhu, Lifeng & Qian, Yong & Wang, Xiaole & Lu, Xingcai, 2015. "Effects of direct injection timing and premixed ratio on combustion and emissions characteristics of RCCI (Reactivity Controlled Compression Ignition) with N-heptane/gasoline-like fuels," Energy, Elsevier, vol. 93(P1), pages 383-392.
- Poorghasemi, Kamran & Saray, Rahim Khoshbakhti & Ansari, Ehsan & Irdmousa, Behrouz Khoshbakht & Shahbakhti, Mehdi & Naber, Jeffery D., 2017. "Effect of diesel injection strategies on natural gas/diesel RCCI combustion characteristics in a light duty diesel engine," Applied Energy, Elsevier, vol. 199(C), pages 430-446.
- Nazemi, M. & Shahbakhti, M., 2016. "Modeling and analysis of fuel injection parameters for combustion and performance of an RCCI engine," Applied Energy, Elsevier, vol. 165(C), pages 135-150.
- Wang, Yifeng & Yao, Mingfa & Li, Tie & Zhang, Weijing & Zheng, Zunqing, 2016. "A parametric study for enabling reactivity controlled compression ignition (RCCI) operation in diesel engines at various engine loads," Applied Energy, Elsevier, vol. 175(C), pages 389-402.
- Maghbouli, Amin & Yang, Wenming & An, Hui & Li, Jing & Chou, Siaw Kiang & Chua, Kian Jon, 2013. "An advanced combustion model coupled with detailed chemical reaction mechanism for D.I diesel engine simulation," Applied Energy, Elsevier, vol. 111(C), pages 758-770.
- Zhang, Chao & Zhang, Chunhua & Xue, Le & Li, Yangyang, 2017. "Combustion characteristics and operation range of a RCCI combustion engine fueled with direct injection n-heptane and pipe injection n-butanol," Energy, Elsevier, vol. 125(C), pages 439-448.
- Li, Jing & Yang, Wenming & Zhou, Dezhi, 2017. "Review on the management of RCCI engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 65-79.
- Ma, Shuaiying & Zheng, Zunqing & Liu, Haifeng & Zhang, Quanchang & Yao, Mingfa, 2013. "Experimental investigation of the effects of diesel injection strategy on gasoline/diesel dual-fuel combustion," Applied Energy, Elsevier, vol. 109(C), pages 202-212.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhang, Zhiqing & Lv, Junshuai & Li, Weiqing & Long, Junming & Wang, Su & Tan, Dongli & Yin, Zibin, 2022. "Performance and emission evaluation of a marine diesel engine fueled with natural gas ignited by biodiesel-diesel blended fuel," Energy, Elsevier, vol. 256(C).
- Jin, Tai & Wu, Yunchao & Wang, Xujiang & Luo, Kai H. & Lu, Tianfeng & Luo, Kun & Fan, Jianren, 2019. "Ignition dynamics of DME/methane-air reactive mixing layer under reactivity controlled compression ignition conditions: Effects of cool flames," Applied Energy, Elsevier, vol. 249(C), pages 343-354.
- Li, Jing & Yu, Xiao & Xie, Jingcheng & Yang, Wenming, 2020. "Mitigation of high pressure rise rate by varying IVC timing and EGR rate in an RCCI engine with high premixed fuel ratio," Energy, Elsevier, vol. 192(C).
- Wenming, Yang & Meng, Yang, 2019. "Phi-T map analysis on RCCI engine fueled by methanol and biodiesel," Energy, Elsevier, vol. 187(C).
- Gharehghani, Ayat & Salahi, Mohammad Mahdi & Andwari, Amin Mahmoudzadeh & Mikulski, Maciej & Könnö, Juho, 2023. "Reactivity enhancement of natural gas/diesel RCCI engine by adding ozone species," Energy, Elsevier, vol. 274(C).
- Ayat Gharehghani & Alireza Kakoee & Amin Mahmoudzadeh Andwari & Thanos Megaritis & Apostolos Pesyridis, 2021. "Numerical Investigation of an RCCI Engine Fueled with Natural Gas/Dimethyl-Ether in Various Injection Strategies," Energies, MDPI, vol. 14(6), pages 1-25, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Pachiannan, Tamilselvan & Zhong, Wenjun & Rajkumar, Sundararajan & He, Zhixia & Leng, Xianying & Wang, Qian, 2019. "A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
- Pan, Suozhu & Cai, Kai & Cai, Min & Du, Chenbo & Li, Xin & Han, Weiqiang & Wang, Xin & Liu, Daming & Wei, Jiangjun & Fang, Jia & Bao, Xiuchao, 2021. "Experimental study on the cyclic variations of ethanol/diesel reactivity controlled compression ignition (RCCI) combustion in a heavy-duty diesel engine," Energy, Elsevier, vol. 237(C).
- Li, Zilong & Zhang, Yaoyuan & Huang, Guan & Zhao, Wenbin & He, Zhuoyao & Qian, Yong & Lu, Xingcai, 2020. "Control of intake boundary conditions for enabling clean combustion in variable engine conditions under intelligent charge compression ignition (ICCI) mode," Applied Energy, Elsevier, vol. 274(C).
- Zheng, Zunqing & Xia, Mingtao & Liu, Haifeng & Wang, Xiaofeng & Yao, Mingfa, 2018. "Experimental study on combustion and emissions of dual fuel RCCI mode fueled with biodiesel/n-butanol, biodiesel/2,5-dimethylfuran and biodiesel/ethanol," Energy, Elsevier, vol. 148(C), pages 824-838.
- Han, Weiqiang & Li, Bolun & Pan, Suozhu & Lu, Yao & Li, Xin, 2018. "Combined effect of inlet pressure, total cycle energy, and start of injection on low load reactivity controlled compression ignition combustion and emission characteristics in a multi-cylinder heavy-d," Energy, Elsevier, vol. 165(PB), pages 846-858.
- Li, Jing & Yang, Wenming & Zhou, Dezhi, 2017. "Review on the management of RCCI engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 65-79.
- Liu, Xinlei & Wang, Hu & Wang, Xiaofeng & Zheng, Zunqing & Yao, Mingfa, 2017. "Experimental and modelling investigations of the diesel surrogate fuels in direct injection compression ignition combustion," Applied Energy, Elsevier, vol. 189(C), pages 187-200.
- Jin, Tai & Wu, Yunchao & Wang, Xujiang & Luo, Kai H. & Lu, Tianfeng & Luo, Kun & Fan, Jianren, 2019. "Ignition dynamics of DME/methane-air reactive mixing layer under reactivity controlled compression ignition conditions: Effects of cool flames," Applied Energy, Elsevier, vol. 249(C), pages 343-354.
- Ahmadi, Rouhollah & Hosseini, S. Mohammad, 2018. "Numerical investigation on adding/substituting hydrogen in the CDC and RCCI combustion in a heavy duty engine," Applied Energy, Elsevier, vol. 213(C), pages 450-468.
- Zhong, Yingzi & Han, Weiqiang & Jin, Chao & Tian, Xiaocong & Liu, Haifeng, 2022. "Study on effects of the hydroxyl group position and carbon chain length on combustion and emission characteristics of Reactivity Controlled Compression Ignition (RCCI) engine fueled with low-carbon st," Energy, Elsevier, vol. 239(PC).
- Paykani, Amin & Garcia, Antonio & Shahbakhti, Mahdi & Rahnama, Pourya & Reitz, Rolf D., 2021. "Reactivity controlled compression ignition engine: Pathways towards commercial viability," Applied Energy, Elsevier, vol. 282(PA).
- Jia, Guorui & Wang, Hu & Tong, Laihui & Wang, Xiaofeng & Zheng, Zunqing & Yao, Mingfa, 2017. "Experimental and numerical studies on three gasoline surrogates applied in gasoline compression ignition (GCI) mode," Applied Energy, Elsevier, vol. 192(C), pages 59-70.
- Ayat Gharehghani & Alireza Kakoee & Amin Mahmoudzadeh Andwari & Thanos Megaritis & Apostolos Pesyridis, 2021. "Numerical Investigation of an RCCI Engine Fueled with Natural Gas/Dimethyl-Ether in Various Injection Strategies," Energies, MDPI, vol. 14(6), pages 1-25, March.
- Li, Jing & Yu, Xiao & Xie, Jingcheng & Yang, Wenming, 2020. "Mitigation of high pressure rise rate by varying IVC timing and EGR rate in an RCCI engine with high premixed fuel ratio," Energy, Elsevier, vol. 192(C).
- Wei Tian & Hongchuan Zhang & Lenian Wang & Zhiqiang Han & Wenbin Yu, 2020. "Effect of Premixed n-Butanol Ratio on the Initial Stage of Combustion in a Light-Duty Butanol/Diesel Dual-Fuel Engine," Energies, MDPI, vol. 13(17), pages 1-10, August.
- Doppalapudi, A.T. & Azad, A.K. & Khan, M.M.K., 2021. "Combustion chamber modifications to improve diesel engine performance and reduce emissions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
- Yang, Hongqiang & Wang, Zhi & Shuai, Shijin & Wang, Jianxin & Xu, Hongming & Wang, Buyu, 2015. "Temporally and spatially distributed combustion in low-octane gasoline multiple premixed compression ignition mode," Applied Energy, Elsevier, vol. 150(C), pages 150-160.
- Hosseini, S. Mohammad & Ahmadi, Rouhollah, 2017. "Performance and emissions characteristics in the combustion of co-fuel diesel-hydrogen in a heavy duty engine," Applied Energy, Elsevier, vol. 205(C), pages 911-925.
- Firmansyah & A. Rashid A. Aziz & Morgan Raymond Heikal & Ezrann Z. Zainal A., 2017. "Diesel/CNG Mixture Autoignition Control Using Fuel Composition and Injection Gap," Energies, MDPI, vol. 10(10), pages 1-12, October.
- Navid Kousheshi & Mortaza Yari & Amin Paykani & Ali Saberi Mehr & German F. de la Fuente, 2020. "Effect of Syngas Composition on the Combustion and Emissions Characteristics of a Syngas/Diesel RCCI Engine," Energies, MDPI, vol. 13(1), pages 1-19, January.
More about this item
Keywords
RCCI; Biodiesel; Double injection; Injection dwell; Split fraction;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:211:y:2018:i:c:p:382-392. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.