IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v162y2016icp99-113.html
   My bibliography  Save this article

Injection timing effects on partially premixed diesel–methane dual fuel low temperature combustion

Author

Listed:
  • Guerry, E. Scott
  • Raihan, Mostafa S.
  • Srinivasan, Kalyan K.
  • Krishnan, Sundar R.
  • Sohail, Aamir

Abstract

Dual fuel low temperature combustion (LTC) strategies are attractive for future internal combustion engines due to their promise of very low engine-out emissions of oxides of nitrogen (NOx) and particulate matter. In the present work, experimental results for diesel-ignited methane dual fuel LTC on a compression ignition single cylinder research engine (SCRE) are presented. Methane was fumigated into the intake manifold and diesel injection was used to initiate combustion. The engine was operated at a constant speed of 1500rev/min, and diesel injection pressure was fixed at 500bar. The start of injection (SOI) of diesel fuel was varied from 260° to 360° (i.e., TDC) to quantify its impact on engine performance and engine-out, indicated-specific emissions of NOx (ISNOx), carbon monoxide (ISCO), and unburned hydrocarbons (ISHC), and smoke emissions. The SOI sweeps were performed at different net indicated mean effective pressures (IMEPs) of 4.1 and 12.1bar. Intake manifold pressure and methane percent energy substitution (PES) were fixed at 1.5bar and 80%, respectively, for 4.1bar IMEP and at 1.8bar and 95%, respectively, for 12.1bar IMEP. For all loads, when SOI was advanced, the longer ignition delays caused the separation between the fuel injection and the combustion events to increase. This was accompanied by a change in the shape of the AHRR curve from a distinct two-stage profile to a smooth, single-stage (almost Gaussian) profile. Advancing SOI to 300° and beyond yielded minimal engine-out ISNOx emissions (∼0.15g/kWh at 4.1bar IMEP and ∼1.3–1.5g/kWh at 12.1bar IMEP). Smoke emissions were negligible (<0.05 FSN) for all loads and all SOIs. Very high ISHC and ISCO emissions were observed for near-TDC SOI at all loads. The lowest ISHC and ISCO levels occurred for SOIs near 310° and for more advanced SOIs, both emissions increased. High pressure rise rates and the tendency to knock prevented engine operation at intermediate SOIs between 310° and 340° for 12.1bar IMEP. On the other hand, for both 4.1bar and 12. 1bar IMEPs, high coefficient of variation of IMEP (>5%) caused unstable engine operation for SOIs advanced beyond 280°.

Suggested Citation

  • Guerry, E. Scott & Raihan, Mostafa S. & Srinivasan, Kalyan K. & Krishnan, Sundar R. & Sohail, Aamir, 2016. "Injection timing effects on partially premixed diesel–methane dual fuel low temperature combustion," Applied Energy, Elsevier, vol. 162(C), pages 99-113.
  • Handle: RePEc:eee:appene:v:162:y:2016:i:c:p:99-113
    DOI: 10.1016/j.apenergy.2015.10.085
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915013124
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.10.085?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Jie & Yang, Fuyuan & Wang, Hewu & Ouyang, Minggao & Hao, Shougang, 2013. "Effects of pilot fuel quantity on the emissions characteristics of a CNG/diesel dual fuel engine with optimized pilot injection timing," Applied Energy, Elsevier, vol. 110(C), pages 201-206.
    2. Ryu, Kyunghyun, 2013. "Effects of pilot injection timing on the combustion and emissions characteristics in a diesel engine using biodiesel–CNG dual fuel," Applied Energy, Elsevier, vol. 111(C), pages 721-730.
    3. De Carvalho, Arnaldo Vieira, 1985. "Natural gas and other alternative fuels for transportation purposes," Energy, Elsevier, vol. 10(2), pages 187-215.
    4. Paul, Abhishek & Bose, Probir Kumar & Panua, Raj Sekhar & Banerjee, Rahul, 2013. "An experimental investigation of performance-emission trade off of a CI engine fueled by diesel–compressed natural gas (CNG) combination and diesel–ethanol blends with CNG enrichment," Energy, Elsevier, vol. 55(C), pages 787-802.
    5. Namasivayam, A.M. & Korakianitis, T. & Crookes, R.J. & Bob-Manuel, K.D.H. & Olsen, J., 2010. "Biodiesel, emulsified biodiesel and dimethyl ether as pilot fuels for natural gas fuelled engines," Applied Energy, Elsevier, vol. 87(3), pages 769-778, March.
    6. Imran, S. & Emberson, D.R. & Diez, A. & Wen, D.S. & Crookes, R.J. & Korakianitis, T., 2014. "Natural gas fueled compression ignition engine performance and emissions maps with diesel and RME pilot fuels," Applied Energy, Elsevier, vol. 124(C), pages 354-365.
    7. Ma, Shuaiying & Zheng, Zunqing & Liu, Haifeng & Zhang, Quanchang & Yao, Mingfa, 2013. "Experimental investigation of the effects of diesel injection strategy on gasoline/diesel dual-fuel combustion," Applied Energy, Elsevier, vol. 109(C), pages 202-212.
    8. Park, Su Han & Yoon, Seung Hyun & Lee, Chang Sik, 2014. "Bioethanol and gasoline premixing effect on combustion and emission characteristics in biodiesel dual-fuel combustion engine," Applied Energy, Elsevier, vol. 135(C), pages 286-298.
    9. Yang, Binbin & Yao, Mingfa & Cheng, Wai K. & Li, Yu & Zheng, Zunqing & Li, Shanju, 2014. "Experimental and numerical study on different dual-fuel combustion modes fuelled with gasoline and diesel," Applied Energy, Elsevier, vol. 113(C), pages 722-733.
    10. Carlucci, A.P. & de Risi, A. & Laforgia, D. & Naccarato, F., 2008. "Experimental investigation and combustion analysis of a direct injection dual-fuel diesel–natural gas engine," Energy, Elsevier, vol. 33(2), pages 256-263.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yousefi, Amin & Guo, Hongsheng & Birouk, Madjid & Liko, Brian, 2019. "On greenhouse gas emissions and thermal efficiency of natural gas/diesel dual-fuel engine at low load conditions: Coupled effect of injector rail pressure and split injection," Applied Energy, Elsevier, vol. 242(C), pages 216-231.
    2. Mahabadipour, Hamidreza & Srinivasan, Kalyan Kumar & Krishnan, Sundar Rajan & Subramanian, Swami Nathan, 2018. "Crank angle-resolved exergy analysis of exhaust flows in a diesel engine from the perspective of exhaust waste energy recovery," Applied Energy, Elsevier, vol. 216(C), pages 31-44.
    3. Abhinandhan Narayanan & Deivanayagam Hariharan & Kendyl Ryan Partridge & Austin Leo Pearson & Kalyan Kumar Srinivasan & Sundar Rajan Krishnan, 2023. "Impact of Low Reactivity Fuel Type and Energy Substitution on Dual Fuel Combustion at Different Injection Timings," Energies, MDPI, vol. 16(4), pages 1-36, February.
    4. Shu, Jun & Fu, Jianqin & Liu, Jingping & Ma, Yinjie & Wang, Shuqian & Deng, Banglin & Zeng, Dongjian, 2019. "Effects of injector spray angle on combustion and emissions characteristics of a natural gas (NG)-diesel dual fuel engine based on CFD coupled with reduced chemical kinetic model," Applied Energy, Elsevier, vol. 233, pages 182-195.
    5. Mikulski, Maciej & Bekdemir, Cemil, 2017. "Understanding the role of low reactivity fuel stratification in a dual fuel RCCI engine – A simulation study," Applied Energy, Elsevier, vol. 191(C), pages 689-708.
    6. Pachiannan, Tamilselvan & Zhong, Wenjun & Rajkumar, Sundararajan & He, Zhixia & Leng, Xianying & Wang, Qian, 2019. "A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    7. Mahabadipour, Hamidreza & Srinivasan, Kalyan K. & Krishnan, Sundar R., 2017. "A second law-based framework to identify high efficiency pathways in dual fuel low temperature combustion," Applied Energy, Elsevier, vol. 202(C), pages 199-212.
    8. Ahmad, Zeeshan & Kaario, Ossi & Qiang, Cheng & Larmi, Martti, 2021. "Effect of pilot fuel properties on lean dual-fuel combustion and emission characteristics in a heavy-duty engine," Applied Energy, Elsevier, vol. 282(PA).
    9. Wang, Yifeng & Yao, Mingfa & Li, Tie & Zhang, Weijing & Zheng, Zunqing, 2016. "A parametric study for enabling reactivity controlled compression ignition (RCCI) operation in diesel engines at various engine loads," Applied Energy, Elsevier, vol. 175(C), pages 389-402.
    10. Song, Heping & Liu, Changpeng & Li, Yanfei & Wang, Zhi & Chen, Longfei & He, Xin & Wang, Jianxin, 2018. "An exploration of utilizing low-pressure diesel injection for natural gas dual-fuel low-temperature combustion," Energy, Elsevier, vol. 153(C), pages 248-255.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meng, Xiangyu & Zhou, Yihui & Yang, Tianhao & Long, Wuqiang & Bi, Mingshu & Tian, Jiangping & Lee, Chia-Fon F., 2020. "An experimental investigation of a dual-fuel engine by using bio-fuel as the additive," Renewable Energy, Elsevier, vol. 147(P1), pages 2238-2249.
    2. Paul, Abhishek & Panua, Raj Sekhar & Debroy, Durbadal & Bose, Probir Kumar, 2014. "Effect of compressed natural gas dual fuel operation with diesel and Pongamia pinnata methyl ester (PPME) as pilot fuels on performance and emission characteristics of a CI (compression ignition) engi," Energy, Elsevier, vol. 68(C), pages 495-509.
    3. Ahmad, Zeeshan & Kaario, Ossi & Qiang, Cheng & Vuorinen, Ville & Larmi, Martti, 2019. "A parametric investigation of diesel/methane dual-fuel combustion progression/stages in a heavy-duty optical engine," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    4. Khandal, S.V. & Banapurmath, N.R. & Gaitonde, V.N., 2018. "Effect of hydrogen fuel flow rate, fuel injection timing and exhaust gas recirculation on the performance of dual fuel engine powered with renewable fuels," Renewable Energy, Elsevier, vol. 126(C), pages 79-94.
    5. Li, Weifeng & Liu, Zhongchang & Wang, Zhongshu, 2016. "Experimental and theoretical analysis of the combustion process at low loads of a diesel natural gas dual-fuel engine," Energy, Elsevier, vol. 94(C), pages 728-741.
    6. Shu, Jun & Fu, Jianqin & Liu, Jingping & Ma, Yinjie & Wang, Shuqian & Deng, Banglin & Zeng, Dongjian, 2019. "Effects of injector spray angle on combustion and emissions characteristics of a natural gas (NG)-diesel dual fuel engine based on CFD coupled with reduced chemical kinetic model," Applied Energy, Elsevier, vol. 233, pages 182-195.
    7. Lee, Chia-fon & Pang, Yuxin & Wu, Han & Nithyanandan, Karthik & Liu, Fushui, 2020. "An optical investigation of substitution rates on natural gas/diesel dual-fuel combustion in a diesel engine," Applied Energy, Elsevier, vol. 261(C).
    8. Lounici, Mohand Said & Loubar, Khaled & Tarabet, Lyes & Balistrou, Mourad & Niculescu, Dan-Catalin & Tazerout, Mohand, 2014. "Towards improvement of natural gas-diesel dual fuel mode: An experimental investigation on performance and exhaust emissions," Energy, Elsevier, vol. 64(C), pages 200-211.
    9. Hosmath, R.S. & Banapurmath, N.R. & Khandal, S.V. & Gaitonde, V.N. & Basavarajappa, Y.H. & Yaliwal, V.S., 2016. "Effect of compression ratio, CNG flow rate and injection timing on the performance of dual fuel engine operated on honge oil methyl ester (HOME) and compressed natural gas (CNG)," Renewable Energy, Elsevier, vol. 93(C), pages 579-590.
    10. Khayum, Naseem & Anbarasu, S. & Murugan, S., 2021. "Optimization of fuel injection parameters and compression ratio of a biogas fueled diesel engine using methyl esters of waste cooking oil as a pilot fuel," Energy, Elsevier, vol. 221(C).
    11. Imran, S. & Korakianitis, T. & Shaukat, R. & Farooq, M. & Condoor, S. & Jayaram, S., 2018. "Experimentally tested performance and emissions advantages of using natural-gas and hydrogen fuel mixture with diesel and rapeseed methyl ester as pilot fuels," Applied Energy, Elsevier, vol. 229(C), pages 1260-1268.
    12. Mahla, S.K. & Dhir, Amit & Gill, Kanwar J.S. & Cho, Haeng Muk & Lim, Hee Chang & Chauhan, Bhupendra Singh, 2018. "Influence of EGR on the simultaneous reduction of NOx-smoke emissions trade-off under CNG-biodiesel dual fuel engine," Energy, Elsevier, vol. 152(C), pages 303-312.
    13. Hegab, Abdelrahman & La Rocca, Antonino & Shayler, Paul, 2017. "Towards keeping diesel fuel supply and demand in balance: Dual-fuelling of diesel engines with natural gas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 666-697.
    14. Xu, Min & Cheng, Wei & Li, Zhi & Zhang, Hongfei & An, Tao & Meng, Zhaokang, 2016. "Pre-injection strategy for pilot diesel compression ignition natural gas engine," Applied Energy, Elsevier, vol. 179(C), pages 1185-1193.
    15. Yang, Bo & Xi, Chengxun & Wei, Xing & Zeng, Ke & Lai, Ming-Chia, 2015. "Parametric investigation of natural gas port injection and diesel pilot injection on the combustion and emissions of a turbocharged common rail dual-fuel engine at low load," Applied Energy, Elsevier, vol. 143(C), pages 130-137.
    16. Li, Yu & Li, Hailin & Guo, Hongsheng & Li, Yongzhi & Yao, Mingfa, 2017. "A numerical investigation on methane combustion and emissions from a natural gas-diesel dual fuel engine using CFD model," Applied Energy, Elsevier, vol. 205(C), pages 153-162.
    17. Xu, Shijie & Zhong, Shenghui & Pang, Kar Mun & Yu, Senbin & Jangi, Mehdi & Bai, Xue-song, 2020. "Effects of ambient methanol on pollutants formation in dual-fuel spray combustion at varying ambient temperatures: A large-eddy simulation," Applied Energy, Elsevier, vol. 279(C).
    18. Ahmad, Zeeshan & Kaario, Ossi & Qiang, Cheng & Larmi, Martti, 2021. "Effect of pilot fuel properties on lean dual-fuel combustion and emission characteristics in a heavy-duty engine," Applied Energy, Elsevier, vol. 282(PA).
    19. Liu, Xinlei & Wang, Hu & Wang, Xiaofeng & Zheng, Zunqing & Yao, Mingfa, 2017. "Experimental and modelling investigations of the diesel surrogate fuels in direct injection compression ignition combustion," Applied Energy, Elsevier, vol. 189(C), pages 187-200.
    20. Dong, Shijun & Wang, Zhaowen & Yang, Can & Ou, Biao & Lu, Hongguang & Xu, Haocheng & Cheng, Xiaobei, 2018. "Investigations on the effects of fuel stratification on auto-ignition and combustion process of an ethanol/diesel dual-fuel engine," Applied Energy, Elsevier, vol. 230(C), pages 19-30.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:162:y:2016:i:c:p:99-113. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.