IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v181y2016icp75-82.html
   My bibliography  Save this article

Effects of plate electrode materials on hydrogen production by pulsed discharge in ethanol solution

Author

Listed:
  • Xin, Yanbin
  • Sun, Bing
  • Zhu, Xiaomei
  • Yan, Zhiyu
  • Liu, Hui
  • Liu, Yongjun

Abstract

Hydrogen production from an ethanol solution by pulsed high voltage spark discharge was optimized by varying the material of plate electrode. It is the first time that metal work function has been used in hydrogen production by plasma reforming. With low work function metal plate electrode, both energy efficiency and hydrogen yield can be increased. The flow rate and the percentage concentration of hydrogen were achieved 1.3L/min and 75% respectively while discharging with zinc plate electrode for hydrogen production, which is much better than traditional stainless steel electrodes at the same conditions. The analysis of emission spectra was also accomplished in this work. All the intensity of existing spectral lines showed a decline with higher work function metal as plate electrode, and H may be the key to the process of hydrogen production. Additionally, electron temperature and density were also estimated. Both of which were increased with lower work function metal plate electrodes. The electron temperature and density can reach 24,000K, 7.5×1018cm−3 respectively.

Suggested Citation

  • Xin, Yanbin & Sun, Bing & Zhu, Xiaomei & Yan, Zhiyu & Liu, Hui & Liu, Yongjun, 2016. "Effects of plate electrode materials on hydrogen production by pulsed discharge in ethanol solution," Applied Energy, Elsevier, vol. 181(C), pages 75-82.
  • Handle: RePEc:eee:appene:v:181:y:2016:i:c:p:75-82
    DOI: 10.1016/j.apenergy.2016.08.047
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916311345
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.08.047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Song, Chunfeng & Liu, Qingling & Ji, Na & Kansha, Yasuki & Tsutsumi, Atsushi, 2015. "Optimization of steam methane reforming coupled with pressure swing adsorption hydrogen production process by heat integration," Applied Energy, Elsevier, vol. 154(C), pages 392-401.
    2. García-Díez, E. & García-Labiano, F. & de Diego, L.F. & Abad, A. & Gayán, P. & Adánez, J. & Ruíz, J.A.C., 2016. "Optimization of hydrogen production with CO2 capture by autothermal chemical-looping reforming using different bioethanol purities," Applied Energy, Elsevier, vol. 169(C), pages 491-498.
    3. Khalifeh, Omid & Mosallanejad, Amin & Taghvaei, Hamed & Rahimpour, Mohammad Reza & Shariati, Alireza, 2016. "Decomposition of methane to hydrogen using nanosecond pulsed plasma reactor with different active volumes, voltages and frequencies," Applied Energy, Elsevier, vol. 169(C), pages 585-596.
    4. Wang, Zhe & Fan, Weiyu & Zhang, Guangqing & Dong, Shuang, 2016. "Exergy analysis of methane cracking thermally coupled with chemical looping combustion for hydrogen production," Applied Energy, Elsevier, vol. 168(C), pages 1-12.
    5. Xin, Yanbin & Sun, Bing & Zhu, Xiaomei & Yan, Zhiyu & Liu, Yongjun & Liu, Hui, 2016. "Characteristics of hydrogen produced by pulsed discharge in ethanol solution," Applied Energy, Elsevier, vol. 168(C), pages 122-129.
    6. Du, ChangMing & Mo, JianMin & Tang, Jun & Huang, DongWei & Mo, ZhiXing & Wang, QingKun & Ma, ShiZhe & Chen, ZhongJie, 2014. "Plasma reforming of bio-ethanol for hydrogen rich gas production," Applied Energy, Elsevier, vol. 133(C), pages 70-79.
    7. Linga Reddy, E. & Biju, V.M. & Subrahmanyam, Ch., 2012. "Production of hydrogen and sulfur from hydrogen sulfide assisted by nonthermal plasma," Applied Energy, Elsevier, vol. 95(C), pages 87-92.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Qiuying & Zhu, Xiaomei & Sun, Bing & Li, Zhi & Liu, Jinglin, 2022. "Hydrogen production from methane via liquid phase microwave plasma: A deoxidation strategy," Applied Energy, Elsevier, vol. 328(C).
    2. Xin, Yanbin & Sun, Bing & Liu, Jingyu & Wang, Quanli & Zhu, Xiaomei & Yan, Zhiyu, 2021. "Effects of electrode configurations, solution pH, TiO2 addition on hydrogen production by in-liquid discharge plasma," Renewable Energy, Elsevier, vol. 171(C), pages 728-734.
    3. Xin, Yanbin & Sun, Bing & Zhu, Xiaomei & Yan, Zhiyu & Zhao, Xiaotong & Sun, Xiaohang, 2017. "Hydrogen production from ethanol decomposition by pulsed discharge with needle-net configurations," Applied Energy, Elsevier, vol. 206(C), pages 126-133.
    4. Zhao, Xiaotong & Sun, Bing & Zhu, Tonghui & Zhu, Xiaomei & Yan, Zhiyu & Xin, Yanbin & Sun, Xiaohang, 2020. "Pathways of hydrogen-rich gas produced by microwave discharge in ethanol-water mixtures," Renewable Energy, Elsevier, vol. 156(C), pages 768-776.
    5. Wang, Xiaoling & Gao, Yuan & Zhang, Shuai & Sun, Hao & Li, Jie & Shao, Tao, 2019. "Nanosecond pulsed plasma assisted dry reforming of CH4: The effect of plasma operating parameters," Applied Energy, Elsevier, vol. 243(C), pages 132-144.
    6. Gao, Yuan & Zhang, Shuai & Sun, Hao & Wang, Ruixue & Tu, Xin & Shao, Tao, 2018. "Highly efficient conversion of methane using microsecond and nanosecond pulsed spark discharges," Applied Energy, Elsevier, vol. 226(C), pages 534-545.
    7. Wu, Angjian & Li, Xiaodong & Yan, Jianhua & Yang, Jian & Du, Changming & Zhu, Fengsen & Qian, Jinyuan, 2017. "Co-generation of hydrogen and carbon aerosol from coalbed methane surrogate using rotating gliding arc plasma," Applied Energy, Elsevier, vol. 195(C), pages 67-79.
    8. Wu, Tianyi & Wang, Junfeng & Zhang, Wei & Zuo, Lei & Xu, Haojie & Li, Bin, 2023. "Plasma bubble characteristics and hydrogen production performance of methanol decomposition by liquid phase discharge," Energy, Elsevier, vol. 273(C).
    9. Xin, Yanbin & Sun, Bing & Zhu, Xiaomei & Yan, Zhiyu & Sun, Xiaohang, 2021. "Hydrogen-rich syngas production by liquid phase pulsed electrodeless discharge," Energy, Elsevier, vol. 214(C).
    10. Xin, Yanbin & Wang, Quanli & Sun, Jiabao & Sun, Bing, 2022. "Plasma in aqueous methanol: Influence of plasma initiation mechanism on hydrogen production," Applied Energy, Elsevier, vol. 325(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, Yuan & Zhang, Shuai & Sun, Hao & Wang, Ruixue & Tu, Xin & Shao, Tao, 2018. "Highly efficient conversion of methane using microsecond and nanosecond pulsed spark discharges," Applied Energy, Elsevier, vol. 226(C), pages 534-545.
    2. Xin, Yanbin & Sun, Bing & Zhu, Xiaomei & Yan, Zhiyu & Zhao, Xiaotong & Sun, Xiaohang, 2017. "Hydrogen production from ethanol decomposition by pulsed discharge with needle-net configurations," Applied Energy, Elsevier, vol. 206(C), pages 126-133.
    3. Wu, Angjian & Li, Xiaodong & Yan, Jianhua & Yang, Jian & Du, Changming & Zhu, Fengsen & Qian, Jinyuan, 2017. "Co-generation of hydrogen and carbon aerosol from coalbed methane surrogate using rotating gliding arc plasma," Applied Energy, Elsevier, vol. 195(C), pages 67-79.
    4. Xin, Yanbin & Sun, Bing & Zhu, Xiaomei & Yan, Zhiyu & Liu, Yongjun & Liu, Hui, 2016. "Characteristics of hydrogen produced by pulsed discharge in ethanol solution," Applied Energy, Elsevier, vol. 168(C), pages 122-129.
    5. Lin, Bingxuan & Wu, Yun & Zhu, Yifei & Song, Feilong & Bian, Dongliang, 2019. "Experimental investigation of gliding arc plasma fuel injector for ignition and extinction performance improvement," Applied Energy, Elsevier, vol. 235(C), pages 1017-1026.
    6. Pashchenko, Dmitry, 2018. "First law energy analysis of thermochemical waste-heat recuperation by steam methane reforming," Energy, Elsevier, vol. 143(C), pages 478-487.
    7. Khalifeh, Omid & Mosallanejad, Amin & Taghvaei, Hamed & Rahimpour, Mohammad Reza & Shariati, Alireza, 2016. "Decomposition of methane to hydrogen using nanosecond pulsed plasma reactor with different active volumes, voltages and frequencies," Applied Energy, Elsevier, vol. 169(C), pages 585-596.
    8. Luo, Ming & Yi, Yang & Wang, Shuzhong & Wang, Zhuliang & Du, Min & Pan, Jianfeng & Wang, Qian, 2018. "Review of hydrogen production using chemical-looping technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3186-3214.
    9. Pashchenko, Dmitry, 2019. "Combined methane reforming with a mixture of methane combustion products and steam over a Ni-based catalyst: An experimental and thermodynamic study," Energy, Elsevier, vol. 185(C), pages 573-584.
    10. Sanusi, Yinka S. & Mokheimer, Esmail M.A., 2019. "Thermo-economic optimization of hydrogen production in a membrane-SMR integrated to ITM-oxy-combustion plant using genetic algorithm," Applied Energy, Elsevier, vol. 235(C), pages 164-176.
    11. Wang, Qiuying & Zhu, Xiaomei & Sun, Bing & Li, Zhi & Liu, Jinglin, 2022. "Hydrogen production from methane via liquid phase microwave plasma: A deoxidation strategy," Applied Energy, Elsevier, vol. 328(C).
    12. Lee, Boreum & Lim, Dongjun & Lee, Hyunjun & Byun, Manhee & Lim, Hankwon, 2021. "Techno-economic analysis of H2 energy storage system based on renewable energy certificate," Renewable Energy, Elsevier, vol. 167(C), pages 91-98.
    13. Zhao, Xiaotong & Sun, Bing & Zhu, Tonghui & Zhu, Xiaomei & Yan, Zhiyu & Xin, Yanbin & Sun, Xiaohang, 2020. "Pathways of hydrogen-rich gas produced by microwave discharge in ethanol-water mixtures," Renewable Energy, Elsevier, vol. 156(C), pages 768-776.
    14. Xin, Yanbin & Sun, Bing & Liu, Jingyu & Wang, Quanli & Zhu, Xiaomei & Yan, Zhiyu, 2021. "Effects of electrode configurations, solution pH, TiO2 addition on hydrogen production by in-liquid discharge plasma," Renewable Energy, Elsevier, vol. 171(C), pages 728-734.
    15. Mohsen Fallah Vostakola & Babak Salamatinia & Bahman Amini Horri, 2022. "A Review on Recent Progress in the Integrated Green Hydrogen Production Processes," Energies, MDPI, vol. 15(3), pages 1-41, February.
    16. Sun, Zhao & Chen, Shiyi & Ma, Shiwei & Xiang, Wenguo & Song, Quanbin, 2016. "Simulation of the calcium looping process (CLP) for hydrogen, carbon monoxide and acetylene poly-generation with CO2 capture and COS reduction," Applied Energy, Elsevier, vol. 169(C), pages 642-651.
    17. Liu, Shuoshi & Yang, Lu & Chen, Bokun & Yang, Siyu & Qian, Yu, 2021. "Comprehensive energy analysis and integration of coal-based MTO process," Energy, Elsevier, vol. 214(C).
    18. Xia, Hui & Ye, Qing & Feng, Shenyao & Li, Rui & Suo, Xiaomeng, 2017. "A novel energy-saving pressure swing distillation process based on self-heat recuperation technology," Energy, Elsevier, vol. 141(C), pages 770-781.
    19. Lee, Boreum & Kim, Hyunwoo & Lee, Hyunjun & Byun, Manhee & Won, Wangyun & Lim, Hankwon, 2020. "Technical and economic feasibility under uncertainty for methane dry reforming of coke oven gas as simultaneous H2 production and CO2 utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    20. Wang, Wanrong & Ma, Yingjie & Maroufmashat, Azadeh & Zhang, Nan & Li, Jie & Xiao, Xin, 2022. "Optimal design of large-scale solar-aided hydrogen production process via machine learning based optimisation framework," Applied Energy, Elsevier, vol. 305(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:181:y:2016:i:c:p:75-82. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.