IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v180y2016icp457-471.html
   My bibliography  Save this article

Energy efficient sorption enhanced-chemical looping methane reforming process for high-purity H2 production: Experimental proof-of-concept

Author

Listed:
  • Antzara, Andy
  • Heracleous, Eleni
  • Lemonidou, Angeliki A.

Abstract

High purity H2 was produced by a novel low-energy sorption enhanced steam methane reforming process by introducing a second loop in order to provide part of the required heat for the endothermic sorbent calcination in the regeneration stage. The feasibility of the intensified reforming process was demonstrated experimentally over a mixture of a bifunctional NiO-based oxygen transfer material/reforming catalyst supported on ZrO2, and a ZrO2-promoted CaO-based CO2 sorbent. The experiments were performed in a bench-scale fixed bed reactor unit. The influence of operating parameters, such as reformer’s temperature, steam/methane and NiO/CaO molar ratios and space velocity of the feed stream, was investigated in order to determine the optimum operating conditions and assess the full potential of the combined process over the two solids. The presence of the CO2 sorbent in the reactor facilitated H2 production of high purity. Equilibrium concentrations were obtained over all studied conditions, even at very high space velocities. The process was further demonstrated with a continuous cyclic test of 20 reforming/regeneration cycles at a temperature of 650°C. The CO2 sorbent and the oxygen transfer material exhibited excellent stability without deterioration in performance for 20 consecutive cycles, corresponding to more than 60h of testing. H2 concentration over 95% was achieved throughout the sorbent’s prebreakthrough region during the reduction/reforming/carbonation stage. During the reoxidation/calcination step, the highly exothermic Ni oxidation provided adequate heat to raise the temperature of the solids and decompose up to 45% of the saturated sorbent without external heating.

Suggested Citation

  • Antzara, Andy & Heracleous, Eleni & Lemonidou, Angeliki A., 2016. "Energy efficient sorption enhanced-chemical looping methane reforming process for high-purity H2 production: Experimental proof-of-concept," Applied Energy, Elsevier, vol. 180(C), pages 457-471.
  • Handle: RePEc:eee:appene:v:180:y:2016:i:c:p:457-471
    DOI: 10.1016/j.apenergy.2016.08.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916310923
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.08.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kavosh, Masoud & Patchigolla, Kumar & Anthony, Edward J. & Oakey, John E., 2014. "Carbonation performance of lime for cyclic CO2 capture following limestone calcination in steam/CO2 atmosphere," Applied Energy, Elsevier, vol. 131(C), pages 499-507.
    2. Martínez, I. & Romano, M.C. & Fernández, J.R. & Chiesa, P. & Murillo, R. & Abanades, J.C., 2014. "Process design of a hydrogen production plant from natural gas with CO2 capture based on a novel Ca/Cu chemical loop," Applied Energy, Elsevier, vol. 114(C), pages 192-208.
    3. E. J. (Ben) Anthony, 2011. "Ca looping technology: current status, developments and future directions," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 1(1), pages 36-47, March.
    4. Dou, Binlin & Song, Yongchen & Wang, Chao & Chen, Haisheng & Yang, Mingjun & Xu, Yujie, 2014. "Hydrogen production by enhanced-sorption chemical looping steam reforming of glycerol in moving-bed reactors," Applied Energy, Elsevier, vol. 130(C), pages 342-349.
    5. Rossi, Federico & Nicolini, Andrea, 2012. "An experimental investigation to improve the hydrogen production by water photoelectrolysis when cyanin-chloride is used as sensibilizer," Applied Energy, Elsevier, vol. 97(C), pages 763-770.
    6. Antzara, Andy & Heracleous, Eleni & Lemonidou, Angeliki A., 2015. "Improving the stability of synthetic CaO-based CO2 sorbents by structural promoters," Applied Energy, Elsevier, vol. 156(C), pages 331-343.
    7. Hafizi, A. & Rahimpour, M.R. & Hassanajili, Sh., 2016. "Hydrogen production via chemical looping steam methane reforming process: Effect of cerium and calcium promoters on the performance of Fe2O3/Al2O3 oxygen carrier," Applied Energy, Elsevier, vol. 165(C), pages 685-694.
    8. Barelli, L. & Bidini, G. & Gallorini, F. & Servili, S., 2008. "Hydrogen production through sorption-enhanced steam methane reforming and membrane technology: A review," Energy, Elsevier, vol. 33(4), pages 554-570.
    9. Ni, Meng & Leung, Michael K.H. & Leung, Dennis Y.C. & Sumathy, K., 2007. "A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(3), pages 401-425, April.
    10. Zhao, Haibo & Guo, Lei & Zou, Xixian, 2015. "Chemical-looping auto-thermal reforming of biomass using Cu-based oxygen carrier," Applied Energy, Elsevier, vol. 157(C), pages 408-415.
    11. Paraskevi Panagiotopoulou & Christina Papadopoulou & Haris Matralis & Xenophon Verykios, 2014. "Production of renewable hydrogen by reformation of biofuels," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 3(3), pages 231-253, May.
    12. Tang, Mingchen & Xu, Long & Fan, Maohong, 2015. "Progress in oxygen carrier development of methane-based chemical-looping reforming: A review," Applied Energy, Elsevier, vol. 151(C), pages 143-156.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Diglio, Giuseppe & Hanak, Dawid P. & Bareschino, Piero & Pepe, Francesco & Montagnaro, Fabio & Manovic, Vasilije, 2018. "Modelling of sorption-enhanced steam methane reforming in a fixed bed reactor network integrated with fuel cell," Applied Energy, Elsevier, vol. 210(C), pages 1-15.
    2. Lu, Chunqiang & Li, Kongzhai & Zhu, Xing & Wei, Yonggang & Li, Lei & Zheng, Min & Fan, Bingbing & He, Fang & Wang, Hua, 2020. "Improved activity of magnetite oxygen carrier for chemical looping steam reforming by ultrasonic treatment," Applied Energy, Elsevier, vol. 261(C).
    3. Diglio, Giuseppe & Bareschino, Piero & Mancusi, Erasmo & Pepe, Francesco & Montagnaro, Fabio & Hanak, Dawid P. & Manovic, Vasilije, 2018. "Feasibility of CaO/CuO/NiO sorption-enhanced steam methane reforming integrated with solid-oxide fuel cell for near-zero-CO2 emissions cogeneration system," Applied Energy, Elsevier, vol. 230(C), pages 241-256.
    4. Pashchenko, Dmitry, 2018. "First law energy analysis of thermochemical waste-heat recuperation by steam methane reforming," Energy, Elsevier, vol. 143(C), pages 478-487.
    5. Usmani, Zeba & Sharma, Minaxi & Karpichev, Yevgen & Pandey, Ashok & Chander Kuhad, Ramesh & Bhat, Rajeev & Punia, Rajesh & Aghbashlo, Mortaza & Tabatabaei, Meisam & Gupta, Vijai Kumar, 2020. "Advancement in valorization technologies to improve utilization of bio-based waste in bioeconomy context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    6. Cao, Pengfei & Adegbite, Stephen & Zhao, Haitao & Lester, Edward & Wu, Tao, 2018. "Tuning dry reforming of methane for F-T syntheses: A thermodynamic approach," Applied Energy, Elsevier, vol. 227(C), pages 190-197.
    7. Sui, Jiyuan & Chen, Zhennan & Wang, Chen & Wang, Yueyang & Liu, Jianhong & Li, Wenjia, 2020. "Efficient hydrogen production from solar energy and fossil fuel via water-electrolysis and methane-steam-reforming hybridization," Applied Energy, Elsevier, vol. 276(C).
    8. Hwangbo, Soonho & Lee, In-Beum & Han, Jeehoon, 2017. "Mathematical model to optimize design of integrated utility supply network and future global hydrogen supply network under demand uncertainty," Applied Energy, Elsevier, vol. 195(C), pages 257-267.
    9. Antzaras, Andy N. & Lemonidou, Angeliki A., 2022. "Recent advances on materials and processes for intensified production of blue hydrogen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    10. Abd El-Hafiz, Dalia R. & Sakr, A. A.E & Ebiad, Mohamed A., 2021. "Methane Bi-reforming for direct ethanol production over smart Cu/Mn- ferrite catalysts," Renewable Energy, Elsevier, vol. 167(C), pages 236-247.
    11. Zain, Munirah Md & Mohamed, Abdul Rahman, 2018. "An overview on conversion technologies to produce value added products from CH4 and CO2 as major biogas constituents," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 56-63.
    12. Gil, María V. & Rout, Kumar R. & Chen, De, 2018. "Production of high pressure pure H2 by pressure swing sorption enhanced steam reforming (PS-SESR) of byproducts in biorefinery," Applied Energy, Elsevier, vol. 222(C), pages 595-607.
    13. Xiang, Dong & Zhou, Yunpeng, 2018. "Concept design and techno-economic performance of hydrogen and ammonia co-generation by coke-oven gas-pressure swing adsorption integrated with chemical looping hydrogen process," Applied Energy, Elsevier, vol. 229(C), pages 1024-1034.
    14. Chen, Xuejing & Jiang, Jianguo & Li, Kaimin & Tian, Sicong & Yan, Feng, 2017. "Energy-efficient biogas reforming process to produce syngas: The enhanced methane conversion by O2," Applied Energy, Elsevier, vol. 185(P1), pages 687-697.
    15. Akbari-Emadabadi, S. & Rahimpour, M.R. & Hafizi, A. & Keshavarz, P., 2017. "Production of hydrogen-rich syngas using Zr modified Ca-Co bifunctional catalyst-sorbent in chemical looping steam methane reforming," Applied Energy, Elsevier, vol. 206(C), pages 51-62.
    16. Lu, Chunqiang & Li, Kongzhai & Wang, Hua & Zhu, Xing & Wei, Yonggang & Zheng, Min & Zeng, Chunhua, 2018. "Chemical looping reforming of methane using magnetite as oxygen carrier: Structure evolution and reduction kinetics," Applied Energy, Elsevier, vol. 211(C), pages 1-14.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antzaras, Andy N. & Lemonidou, Angeliki A., 2022. "Recent advances on materials and processes for intensified production of blue hydrogen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    2. Akbari-Emadabadi, S. & Rahimpour, M.R. & Hafizi, A. & Keshavarz, P., 2017. "Production of hydrogen-rich syngas using Zr modified Ca-Co bifunctional catalyst-sorbent in chemical looping steam methane reforming," Applied Energy, Elsevier, vol. 206(C), pages 51-62.
    3. Luo, Ming & Yi, Yang & Wang, Shuzhong & Wang, Zhuliang & Du, Min & Pan, Jianfeng & Wang, Qian, 2018. "Review of hydrogen production using chemical-looping technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3186-3214.
    4. Esteban-Díez, G. & Gil, María V. & Pevida, C. & Chen, D. & Rubiera, F., 2016. "Effect of operating conditions on the sorption enhanced steam reforming of blends of acetic acid and acetone as bio-oil model compounds," Applied Energy, Elsevier, vol. 177(C), pages 579-590.
    5. Theo, Wai Lip & Lim, Jeng Shiun & Hashim, Haslenda & Mustaffa, Azizul Azri & Ho, Wai Shin, 2016. "Review of pre-combustion capture and ionic liquid in carbon capture and storage," Applied Energy, Elsevier, vol. 183(C), pages 1633-1663.
    6. Sanusi, Yinka S. & Mokheimer, Esmail M.A., 2019. "Thermo-economic optimization of hydrogen production in a membrane-SMR integrated to ITM-oxy-combustion plant using genetic algorithm," Applied Energy, Elsevier, vol. 235(C), pages 164-176.
    7. Hafizi, A. & Rahimpour, M.R. & Hassanajili, Sh., 2016. "Hydrogen production via chemical looping steam methane reforming process: Effect of cerium and calcium promoters on the performance of Fe2O3/Al2O3 oxygen carrier," Applied Energy, Elsevier, vol. 165(C), pages 685-694.
    8. Arnob Das & Susmita Datta Peu, 2022. "A Comprehensive Review on Recent Advancements in Thermochemical Processes for Clean Hydrogen Production to Decarbonize the Energy Sector," Sustainability, MDPI, vol. 14(18), pages 1-42, September.
    9. Lu, Chunqiang & Li, Kongzhai & Wang, Hua & Zhu, Xing & Wei, Yonggang & Zheng, Min & Zeng, Chunhua, 2018. "Chemical looping reforming of methane using magnetite as oxygen carrier: Structure evolution and reduction kinetics," Applied Energy, Elsevier, vol. 211(C), pages 1-14.
    10. Zhang, Wan & Li, Yingjie & He, Zirui & Ma, Xiaotong & Song, Haiping, 2017. "CO2 capture by carbide slag calcined under high-concentration steam and energy requirement in calcium looping conditions," Applied Energy, Elsevier, vol. 206(C), pages 869-878.
    11. Mohsen Fallah Vostakola & Babak Salamatinia & Bahman Amini Horri, 2022. "A Review on Recent Progress in the Integrated Green Hydrogen Production Processes," Energies, MDPI, vol. 15(3), pages 1-41, February.
    12. Sun, Zhao & Chen, Shiyi & Ma, Shiwei & Xiang, Wenguo & Song, Quanbin, 2016. "Simulation of the calcium looping process (CLP) for hydrogen, carbon monoxide and acetylene poly-generation with CO2 capture and COS reduction," Applied Energy, Elsevier, vol. 169(C), pages 642-651.
    13. Liu, Xiangyu & Zhang, Hao & Hong, Hui & Jin, Hongguang, 2020. "Experimental study on honeycomb reactor using methane via chemical looping cycle for solar syngas," Applied Energy, Elsevier, vol. 268(C).
    14. Sanusi, Yinka S. & Mokheimer, Esmail M.A. & Habib, Mohamed A., 2017. "Thermo-economic analysis of integrated membrane-SMR ITM-oxy-combustion hydrogen and power production plant," Applied Energy, Elsevier, vol. 204(C), pages 626-640.
    15. Zhang, Haotian & Sun, Zhuxing & Hu, Yun Hang, 2021. "Steam reforming of methane: Current states of catalyst design and process upgrading," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    16. Gil, María V. & Rout, Kumar R. & Chen, De, 2018. "Production of high pressure pure H2 by pressure swing sorption enhanced steam reforming (PS-SESR) of byproducts in biorefinery," Applied Energy, Elsevier, vol. 222(C), pages 595-607.
    17. Lee Pereira, Reinaldo Juan & Argyris, Panagiotis Alexandros & Spallina, Vincenzo, 2020. "A comparative study on clean ammonia production using chemical looping based technology," Applied Energy, Elsevier, vol. 280(C).
    18. Zhao, Yunlei & Jin, Bo & Luo, Xiao & Liang, Zhiwu, 2021. "Thermodynamic evaluation and experimental investigation of CaO-assisted Fe-based chemical looping reforming process for syngas production," Applied Energy, Elsevier, vol. 288(C).
    19. Hafizi, A. & Rahimpour, M.R. & Hassanajili, S., 2016. "High purity hydrogen production via sorption enhanced chemical looping reforming: Application of 22Fe2O3/MgAl2O4 and 22Fe2O3/Al2O3 as oxygen carriers and cerium promoted CaO as CO2 sorbent," Applied Energy, Elsevier, vol. 169(C), pages 629-641.
    20. Ma, Xiaotong & Li, Yingjie & Shi, Lei & He, Zirui & Wang, Zeyan, 2016. "Fabrication and CO2 capture performance of magnesia-stabilized carbide slag by by-product of biodiesel during calcium looping process," Applied Energy, Elsevier, vol. 168(C), pages 85-95.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:180:y:2016:i:c:p:457-471. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.