Spinel ferrite-contained industrial materials as oxygen carriers in chemical looping combustion
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2021.118298
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Gu, Zhenhua & Zhang, Ling & Lu, Chunqiang & Qing, Shan & Li, Kongzhai, 2020. "Enhanced performance of copper ore oxygen carrier by red mud modification for chemical looping combustion," Applied Energy, Elsevier, vol. 277(C).
- Rane, V. H. & Rajput, A. M. & Karkamkar, A. J. & Choudhary, V. R., 2004. "Energy-efficient conversion of propane to propylene and ethylene over a V2O5/CeO2/SA5205 catalyst in the presence of limited oxygen," Applied Energy, Elsevier, vol. 77(4), pages 375-382, April.
- Do, Jeong Yeon & Son, Namgyu & Park, No-Kuk & Kwak, Byeong Sub & Baek, Jeom-In & Ryu, Ho-Jung & Kang, Misook, 2018. "Reliable oxygen transfer in MgAl2O4 spinel through the reversible formation of oxygen vacancies by Cu2+/Fe3+ anchoring," Applied Energy, Elsevier, vol. 219(C), pages 138-150.
- Benincosa, William & Siriwardane, Ranjani & Tian, Hanjing & Riley, Jarrett & Poston, James, 2020. "A particle-scale reduction model of copper iron manganese oxide with CO for chemical looping combustion," Applied Energy, Elsevier, vol. 262(C).
- Abad, A. & Pérez-Vega, R. & de Diego, L.F. & Gayán, P. & Izquierdo, M.T. & García-Labiano, F. & Adánez, J., 2019. "Thermochemical assessment of chemical looping assisted by oxygen uncoupling with a MnFe-based oxygen carrier," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
- Miller, Duane D. & Siriwardane, Ranjani & Poston, James, 2015. "Fluidized-bed and fixed-bed reactor testing of methane chemical looping combustion with MgO-promoted hematite," Applied Energy, Elsevier, vol. 146(C), pages 111-121.
- Zeng, Jimin & Xiao, Rui & Zhang, Shuai & Zhang, Huiyan & Zeng, Dewang & Qiu, Yu & Ma, Zhong, 2018. "Identifying iron-based oxygen carrier reduction during biomass chemical looping gasification on a thermogravimetric fixed-bed reactor," Applied Energy, Elsevier, vol. 229(C), pages 404-412.
- Tian, Xin & Zhao, Haibo & Ma, Jinchen, 2017. "Cement bonded fine hematite and copper ore particles as oxygen carrier in chemical looping combustion," Applied Energy, Elsevier, vol. 204(C), pages 242-253.
- Wang, Haiming & Dou, Xiaomin & Veksha, Andrei & Liu, Wen & Giannis, Apostolos & Ge, Liya & Thye Lim, Teik & Lisak, Grzegorz, 2020. "Barium aluminate improved iron ore for the chemical looping combustion of syngas," Applied Energy, Elsevier, vol. 272(C).
- Haider, S.K. & Azimi, G. & Duan, L. & Anthony, E.J. & Patchigolla, K. & Oakey, J.E. & Leion, H. & Mattisson, T. & Lyngfelt, A., 2016. "Enhancing properties of iron and manganese ores as oxygen carriers for chemical looping processes by dry impregnation," Applied Energy, Elsevier, vol. 163(C), pages 41-50.
- Rydén, Magnus & Leion, Henrik & Mattisson, Tobias & Lyngfelt, Anders, 2014. "Combined oxides as oxygen-carrier material for chemical-looping with oxygen uncoupling," Applied Energy, Elsevier, vol. 113(C), pages 1924-1932.
- Liu, Shuai & Xiang, Dong & Xu, Ying & Sun, Zhe & Cao, Yan, 2017. "Relationship between electronic properties of Fe3O4 substituted by Ca and Ba and their reactivity in chemical looping process: A first-principles study," Applied Energy, Elsevier, vol. 202(C), pages 550-557.
- Deng, Guixian & Li, Kongzhai & Zhang, Guifang & Gu, Zhenhua & Zhu, Xing & Wei, Yonggang & Wang, Hua, 2019. "Enhanced performance of red mud-based oxygen carriers by CuO for chemical looping combustion of methane," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
- Arjmand, Mehdi & Leion, Henrik & Mattisson, Tobias & Lyngfelt, Anders, 2014. "Investigation of different manganese ores as oxygen carriers in chemical-looping combustion (CLC) for solid fuels," Applied Energy, Elsevier, vol. 113(C), pages 1883-1894.
- Guo, Jian-Xin & Huang, Chen, 2020. "Feasible roadmap for CCS retrofit of coal-based power plants to reduce Chinese carbon emissions by 2050," Applied Energy, Elsevier, vol. 259(C).
- Sun, Zhenkun & Lu, Dennis Y. & Ridha, Firas N. & Hughes, Robin W. & Filippou, Dimitrios, 2017. "Enhanced performance of ilmenite modified by CeO2, ZrO2, NiO, and Mn2O3 as oxygen carriers in chemical looping combustion," Applied Energy, Elsevier, vol. 195(C), pages 303-315.
- Qiu, Yu & Zhang, Shuai & Cui, Dongxu & Li, Min & Zeng, Jimin & Zeng, Dewang & Xiao, Rui, 2019. "Enhanced hydrogen production performance at intermediate temperatures through the synergistic effects of binary oxygen carriers," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
- Chen, Yu-Yen & Nadgouda, Sourabh & Shah, Vedant & Fan, Liang-Shih & Tong, Andrew, 2020. "Oxidation kinetic modelling of Fe-based oxygen carriers for chemical looping applications: Impact of the topochemical effect," Applied Energy, Elsevier, vol. 279(C).
- Zhao, Haibo & Guo, Lei & Zou, Xixian, 2015. "Chemical-looping auto-thermal reforming of biomass using Cu-based oxygen carrier," Applied Energy, Elsevier, vol. 157(C), pages 408-415.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhang, Zhiyuan & Wang, Xutao & Zhang, Lilin & Zhou, Hengtao & Ju, Rui & Rao, Peijun & Guo, Xiaoyu & Han, Yaqian & Chen, Hongwei, 2022. "Characteristics of steel slag as an oxygen carrier for chemical looping gasification of sewage sludge," Energy, Elsevier, vol. 247(C).
- Wu, Shijie & Ren, Zongqiang & Hu, Qiang & Yao, Dingding & Yang, Haiping, 2024. "Upcycling plastic waste into syngas by staged chemical looping gasification with modified Fe-based oxygen carriers," Applied Energy, Elsevier, vol. 353(PB).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lin, Shen & Gu, Zhenhua & Zhu, Xing & Wei, Yonggang & Long, Yanhui & Yang, Kun & He, Fang & Wang, Hua & Li, Kongzhai, 2020. "Synergy of red mud oxygen carrier with MgO and NiO for enhanced chemical-looping combustion," Energy, Elsevier, vol. 197(C).
- Gu, Zhenhua & Zhang, Ling & Lu, Chunqiang & Qing, Shan & Li, Kongzhai, 2020. "Enhanced performance of copper ore oxygen carrier by red mud modification for chemical looping combustion," Applied Energy, Elsevier, vol. 277(C).
- Tian, Xin & Zhao, Haibo & Ma, Jinchen, 2017. "Cement bonded fine hematite and copper ore particles as oxygen carrier in chemical looping combustion," Applied Energy, Elsevier, vol. 204(C), pages 242-253.
- Haider, S.K. & Azimi, G. & Duan, L. & Anthony, E.J. & Patchigolla, K. & Oakey, J.E. & Leion, H. & Mattisson, T. & Lyngfelt, A., 2016. "Enhancing properties of iron and manganese ores as oxygen carriers for chemical looping processes by dry impregnation," Applied Energy, Elsevier, vol. 163(C), pages 41-50.
- Galinsky, Nathan & Mishra, Amit & Zhang, Jia & Li, Fanxing, 2015. "Ca1−xAxMnO3 (A=Sr and Ba) perovskite based oxygen carriers for chemical looping with oxygen uncoupling (CLOU)," Applied Energy, Elsevier, vol. 157(C), pages 358-367.
- Ping Wang & Nicholas Means & Dushyant Shekhawat & David Berry & Mehrdad Massoudi, 2015. "Chemical-Looping Combustion and Gasification of Coals and Oxygen Carrier Development: A Brief Review," Energies, MDPI, vol. 8(10), pages 1-31, September.
- Galinsky, Nathan & Sendi, Marwan & Bowers, Lindsay & Li, Fanxing, 2016. "CaMn1−xBxO3−δ (B=Al, V, Fe, Co, and Ni) perovskite based oxygen carriers for chemical looping with oxygen uncoupling (CLOU)," Applied Energy, Elsevier, vol. 174(C), pages 80-87.
- Lu, Chunqiang & Li, Kongzhai & Zhu, Xing & Wei, Yonggang & Li, Lei & Zheng, Min & Fan, Bingbing & He, Fang & Wang, Hua, 2020. "Improved activity of magnetite oxygen carrier for chemical looping steam reforming by ultrasonic treatment," Applied Energy, Elsevier, vol. 261(C).
- Xu, Lei & Sun, Hongming & Li, Zhenshan & Cai, Ningsheng, 2016. "Experimental study of copper modified manganese ores as oxygen carriers in a dual fluidized bed reactor," Applied Energy, Elsevier, vol. 162(C), pages 940-947.
- Deng, Guixian & Li, Kongzhai & Zhang, Guifang & Gu, Zhenhua & Zhu, Xing & Wei, Yonggang & Wang, Hua, 2019. "Enhanced performance of red mud-based oxygen carriers by CuO for chemical looping combustion of methane," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
- Wang, Kun & Tian, Xin & Zhao, Haibo, 2016. "Sulfur behavior in chemical-looping combustion using a copper ore oxygen carrier," Applied Energy, Elsevier, vol. 166(C), pages 84-95.
- Mendiara, T. & García-Labiano, F. & Abad, A. & Gayán, P. & de Diego, L.F. & Izquierdo, M.T. & Adánez, J., 2018. "Negative CO2 emissions through the use of biofuels in chemical looping technology: A review," Applied Energy, Elsevier, vol. 232(C), pages 657-684.
- Do, Jeong Yeon & Son, Namgyu & Park, No-Kuk & Kwak, Byeong Sub & Baek, Jeom-In & Ryu, Ho-Jung & Kang, Misook, 2018. "Reliable oxygen transfer in MgAl2O4 spinel through the reversible formation of oxygen vacancies by Cu2+/Fe3+ anchoring," Applied Energy, Elsevier, vol. 219(C), pages 138-150.
- Cheng, Xianming & Li, Kongzhai & Zhu, Xing & Wei, Yonggang & Li, Zhouhang & Long, Yanhui & Zheng, Min & Tian, Dong & Wang, Hua, 2018. "Enhanced performance of chemical looping combustion of methane by combining oxygen carriers via optimizing the stacking sequences," Applied Energy, Elsevier, vol. 230(C), pages 696-711.
- Siriwardane, Ranjani & Riley, Jarrett & Benincosa, William & Bayham, Samuel & Bobek, Michael & Straub, Douglas & Weber, Justin, 2021. "Development of CuFeMnAlO4+δ oxygen carrier with high attrition resistance and 50-kWth methane/air chemical looping combustion tests," Applied Energy, Elsevier, vol. 286(C).
- Wang, Haiming & Dou, Xiaomin & Veksha, Andrei & Liu, Wen & Giannis, Apostolos & Ge, Liya & Thye Lim, Teik & Lisak, Grzegorz, 2020. "Barium aluminate improved iron ore for the chemical looping combustion of syngas," Applied Energy, Elsevier, vol. 272(C).
- Cabello, Arturo & Abad, Alberto & Gayán, Pilar & García-Labiano, Francisco & de Diego, Luis F. & Adánez, Juan, 2021. "Increasing energy efficiency in chemical looping combustion of methane by in-situ activation of perovskite-based oxygen carriers," Applied Energy, Elsevier, vol. 287(C).
- Qiu, Yu & Zhang, Shuai & Cui, Dongxu & Li, Min & Zeng, Jimin & Zeng, Dewang & Xiao, Rui, 2019. "Enhanced hydrogen production performance at intermediate temperatures through the synergistic effects of binary oxygen carriers," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
- Jiang, Qiongqiong & Zhang, Hao & Deng, Ya'nan & Kang, Qilan & Hong, Hui & Jin, Hongguang, 2018. "Properties and reactivity of LaCuxNi1−xO3 perovskites in chemical-looping combustion for mid-temperature solar-thermal energy storage," Applied Energy, Elsevier, vol. 228(C), pages 1506-1514.
- Liu, Feng & Liu, Jing & Li, Yu & Fang, Ruixue & Yang, Yingju, 2022. "Studies on the synergistically improved reactivity of spinel NiFe2O4 oxygen carrier for chemical-looping combustion," Energy, Elsevier, vol. 239(PB).
More about this item
Keywords
Chemical looping combustion; Iron manganite; Iron chromite; Industrial materials;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:307:y:2022:i:c:s0306261921015579. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.