Calcium looping with supercritical CO2 cycle for decarbonisation of coal-fired power plant
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2016.02.079
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Pham, H.S. & Alpy, N. & Ferrasse, J.H. & Boutin, O. & Quenaut, J. & Tothill, M. & Haubensack, D. & Saez, M., 2015. "Mapping of the thermodynamic performance of the supercritical CO2 cycle and optimisation for a small modular reactor and a sodium-cooled fast reactor," Energy, Elsevier, vol. 87(C), pages 412-424.
- Kim, Y.M. & Kim, C.G. & Favrat, D., 2012. "Transcritical or supercritical CO2 cycles using both low- and high-temperature heat sources," Energy, Elsevier, vol. 43(1), pages 402-415.
- Renner, Marie, 2014. "Carbon prices and CCS investment: A comparative study between the European Union and China," Energy Policy, Elsevier, vol. 75(C), pages 327-340.
- Van Wagener, David H. & Liebenthal, Ulrich & Plaza, Jorge M. & Kather, Alfons & Rochelle, Gary T., 2014. "Maximizing coal-fired power plant efficiency with integration of amine-based CO2 capture in greenfield and retrofit scenarios," Energy, Elsevier, vol. 72(C), pages 824-831.
- Pfaff, I. & Oexmann, J. & Kather, A., 2010. "Optimised integration of post-combustion CO2 capture process in greenfield power plants," Energy, Elsevier, vol. 35(10), pages 4030-4041.
- Hanak, Dawid P. & Biliyok, Chechet & Manovic, Vasilije, 2015. "Efficiency improvements for the coal-fired power plant retrofit with CO2 capture plant using chilled ammonia process," Applied Energy, Elsevier, vol. 151(C), pages 258-272.
- Hu, Yukun & Li, Xun & Li, Hailong & Yan, Jinyue, 2013. "Peak and off-peak operations of the air separation unit in oxy-coal combustion power generation systems," Applied Energy, Elsevier, vol. 112(C), pages 747-754.
- Marie Renner, 2014. "Carbon prices and CCS investment: comparative study between the European Union and China," Working Papers 1402, Chaire Economie du climat.
- Le Moullec, Yann, 2013. "Conceptual study of a high efficiency coal-fired power plant with CO2 capture using a supercritical CO2 Brayton cycle," Energy, Elsevier, vol. 49(C), pages 32-46.
- Lara, Yolanda & Lisbona, Pilar & Martínez, Ana & Romeo, Luis M., 2013. "Design and analysis of heat exchanger networks for integrated Ca-looping systems," Applied Energy, Elsevier, vol. 111(C), pages 690-700.
- Iverson, Brian D. & Conboy, Thomas M. & Pasch, James J. & Kruizenga, Alan M., 2013. "Supercritical CO2 Brayton cycles for solar-thermal energy," Applied Energy, Elsevier, vol. 111(C), pages 957-970.
- Padilla, Ricardo Vasquez & Soo Too, Yen Chean & Benito, Regano & Stein, Wes, 2015. "Exergetic analysis of supercritical CO2 Brayton cycles integrated with solar central receivers," Applied Energy, Elsevier, vol. 148(C), pages 348-365.
- Song, Yuhui & Wang, Jiangfeng & Dai, Yiping & Zhou, Enmin, 2012. "Thermodynamic analysis of a transcritical CO2 power cycle driven by solar energy with liquified natural gas as its heat sink," Applied Energy, Elsevier, vol. 92(C), pages 194-203.
- repec:dau:papers:123456789/12983 is not listed on IDEAS
- Puig-Arnavat, Maria & Søgaard, Martin & Hjuler, Klaus & Ahrenfeldt, Jesper & Henriksen, Ulrik Birk & Hendriksen, Peter Vang, 2015. "Integration of oxygen membranes for oxygen production in cement plants," Energy, Elsevier, vol. 91(C), pages 852-865.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Katarzyna Tobór-Osadnik & Bożena Gajdzik & Grzegorz Strzelec, 2023. "Configurational Path of Decarbonisation Based on Coal Mine Methane (CMM): An Econometric Model for the Polish Mining Industry," Sustainability, MDPI, vol. 15(13), pages 1-16, June.
- Khosravi, Soheil & Hossainpour, Siamak & Farajollahi, Hossein & Abolzadeh, Nemat, 2022. "Integration of a coal fired power plant with calcium looping CO2 capture and concentrated solar power generation: Energy, exergy and economic analysis," Energy, Elsevier, vol. 240(C).
- Khosravi, Soheil & Neshat, Elaheh & Saray, Rahim Khoshbakhti, 2023. "Thermodynamic analysis of a sorption-enhanced gasification process of municipal solid waste, integrated with concentrated solar power and thermal energy storage systems for co-generation of power and ," Renewable Energy, Elsevier, vol. 214(C), pages 140-153.
- Luo, Kun & Zhao, Chunguang & Wen, Xu & Gao, Zhengwei & Bai, Yun & Xing, Jiangkuan & Fan, Jianren, 2019. "A priori study of an extended flamelet/progress variable model for NO prediction in pulverized coal flames," Energy, Elsevier, vol. 175(C), pages 768-780.
- Olumayegun, Olumide & Wang, Meihong & Oko, Eni, 2019. "Thermodynamic performance evaluation of supercritical CO2 closed Brayton cycles for coal-fired power generation with solvent-based CO2 capture," Energy, Elsevier, vol. 166(C), pages 1074-1088.
- Najmus S. Sifat & Yousef Haseli, 2019. "A Critical Review of CO 2 Capture Technologies and Prospects for Clean Power Generation," Energies, MDPI, vol. 12(21), pages 1-33, October.
- Liu, Yaping & Wang, Ying & Huang, Diangui, 2019. "Supercritical CO2 Brayton cycle: A state-of-the-art review," Energy, Elsevier, vol. 189(C).
- Yang, D.L. & Tang, G.H. & Fan, Y.H. & Li, X.L. & Wang, S.Q., 2020. "Arrangement and three-dimensional analysis of cooling wall in 1000 MW S–CO2 coal-fired boiler," Energy, Elsevier, vol. 197(C).
- Zhang, Xuelei & Zhang, Zhuoyuan & Wang, Gaofeng, 2023. "Thermodynamic and economic investigation of a novel combined cycle in coal-fired power plant with CO2 capture via Ca-looping," Energy, Elsevier, vol. 263(PB).
- Xu, Jinliang & Sun, Enhui & Li, Mingjia & Liu, Huan & Zhu, Bingguo, 2018. "Key issues and solution strategies for supercritical carbon dioxide coal fired power plant," Energy, Elsevier, vol. 157(C), pages 227-246.
- Michalski, Sebastian & Hanak, Dawid P. & Manovic, Vasilije, 2020. "Advanced power cycles for coal-fired power plants based on calcium looping combustion: A techno-economic feasibility assessment," Applied Energy, Elsevier, vol. 269(C).
- Zhang, Yifan & Li, Hongzhi & Han, Wanlong & Bai, Wengang & Yang, Yu & Yao, Mingyu & Wang, Yueming, 2018. "Improved design of supercritical CO2 Brayton cycle for coal-fired power plant," Energy, Elsevier, vol. 155(C), pages 1-14.
- Khallaghi, Navid & Hanak, Dawid P. & Manovic, Vasilije, 2019. "Gas-fired chemical looping combustion with supercritical CO2 cycle," Applied Energy, Elsevier, vol. 249(C), pages 237-244.
- Larissa Fedunik-Hofman & Alicia Bayon & Scott W. Donne, 2019. "Kinetics of Solid-Gas Reactions and Their Application to Carbonate Looping Systems," Energies, MDPI, vol. 12(15), pages 1-35, August.
- Strojny, Magdalena & Gładysz, Paweł & Hanak, Dawid P. & Nowak, Wojciech, 2023. "Comparative analysis of CO2 capture technologies using amine absorption and calcium looping integrated with natural gas combined cycle power plant," Energy, Elsevier, vol. 284(C).
- Zhang, Zhien & Borhani, Tohid N. & Olabi, Abdul G., 2020. "Status and perspective of CO2 absorption process," Energy, Elsevier, vol. 205(C).
- Ma, Yuegeng & Liu, Ming & Yan, Junjie & Liu, Jiping, 2017. "Thermodynamic study of main compression intercooling effects on supercritical CO2 recompression Brayton cycle," Energy, Elsevier, vol. 140(P1), pages 746-756.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Crespi, Francesco & Gavagnin, Giacomo & Sánchez, David & Martínez, Gonzalo S., 2017. "Supercritical carbon dioxide cycles for power generation: A review," Applied Energy, Elsevier, vol. 195(C), pages 152-183.
- Ma, Yuegeng & Liu, Ming & Yan, Junjie & Liu, Jiping, 2017. "Thermodynamic study of main compression intercooling effects on supercritical CO2 recompression Brayton cycle," Energy, Elsevier, vol. 140(P1), pages 746-756.
- Liu, Yaping & Wang, Ying & Huang, Diangui, 2019. "Supercritical CO2 Brayton cycle: A state-of-the-art review," Energy, Elsevier, vol. 189(C).
- Guo, Jiangfeng, 2016. "Design analysis of supercritical carbon dioxide recuperator," Applied Energy, Elsevier, vol. 164(C), pages 21-27.
- Michalski, Sebastian & Hanak, Dawid P. & Manovic, Vasilije, 2020. "Advanced power cycles for coal-fired power plants based on calcium looping combustion: A techno-economic feasibility assessment," Applied Energy, Elsevier, vol. 269(C).
- Kim, Min Seok & Ahn, Yoonhan & Kim, Beomjoo & Lee, Jeong Ik, 2016. "Study on the supercritical CO2 power cycles for landfill gas firing gas turbine bottoming cycle," Energy, Elsevier, vol. 111(C), pages 893-909.
- Wang, Kun & He, Ya-Ling & Zhu, Han-Hui, 2017. "Integration between supercritical CO2 Brayton cycles and molten salt solar power towers: A review and a comprehensive comparison of different cycle layouts," Applied Energy, Elsevier, vol. 195(C), pages 819-836.
- Mondal, Subha & De, Sudipta, 2015. "Transcritical CO2 power cycle – Effects of regenerative heating using turbine bleed gas at intermediate pressure," Energy, Elsevier, vol. 87(C), pages 95-103.
- S. Mohammad S. Mahmoudi & Ata D. Akbari & Marc A. Rosen, 2016. "Thermoeconomic Analysis and Optimization of a New Combined Supercritical Carbon Dioxide Recompression Brayton/Kalina Cycle," Sustainability, MDPI, vol. 8(10), pages 1-19, October.
- George Stamatellos & Tassos Stamatelos, 2022. "Effect of Actual Recuperators’ Effectiveness on the Attainable Efficiency of Supercritical CO 2 Brayton Cycles for Solar Thermal Power Plants," Energies, MDPI, vol. 15(20), pages 1-20, October.
- Zhao, Yongming & Zhao, Lifeng & Wang, Bo & Zhang, Shijie & Chi, Jinling & Xiao, Yunhan, 2018. "Thermodynamic analysis of a novel dual expansion coal-fueled direct-fired supercritical carbon dioxide power cycle," Applied Energy, Elsevier, vol. 217(C), pages 480-495.
- Hanak, Dawid P. & Kolios, Athanasios J. & Manovic, Vasilije, 2016. "Comparison of probabilistic performance of calcium looping and chemical solvent scrubbing retrofits for CO2 capture from coal-fired power plant," Applied Energy, Elsevier, vol. 172(C), pages 323-336.
- Olumayegun, Olumide & Wang, Meihong & Kelsall, Greg, 2017. "Thermodynamic analysis and preliminary design of closed Brayton cycle using nitrogen as working fluid and coupled to small modular Sodium-cooled fast reactor (SM-SFR)," Applied Energy, Elsevier, vol. 191(C), pages 436-453.
- Wang, Xurong & Dai, Yiping, 2016. "Exergoeconomic analysis of utilizing the transcritical CO2 cycle and the ORC for a recompression supercritical CO2 cycle waste heat recovery: A comparative study," Applied Energy, Elsevier, vol. 170(C), pages 193-207.
- Akbari, Ata D. & Mahmoudi, Seyed M.S., 2014. "Thermoeconomic analysis & optimization of the combined supercritical CO2 (carbon dioxide) recompression Brayton/organic Rankine cycle," Energy, Elsevier, vol. 78(C), pages 501-512.
- Linares, José Ignacio & Cantizano, Alexis & Arenas, Eva & Moratilla, Beatriz Yolanda & Martín-Palacios, Víctor & Batet, Lluis, 2017. "Recuperated versus single-recuperator re-compressed supercritical CO2 Brayton power cycles for DEMO fusion reactor based on dual coolant lithium lead blanket," Energy, Elsevier, vol. 140(P1), pages 307-317.
- Rovira, Antonio & Muñoz, Marta & Sánchez, Consuelo & Martínez-Val, José María, 2015. "Proposal and study of a balanced hybrid Rankine–Brayton cycle for low-to-moderate temperature solar power plants," Energy, Elsevier, vol. 89(C), pages 305-317.
- Ma, Yuegeng & Zhang, Xuwei & Liu, Ming & Yan, Junjie & Liu, Jiping, 2018. "Proposal and assessment of a novel supercritical CO2 Brayton cycle integrated with LiBr absorption chiller for concentrated solar power applications," Energy, Elsevier, vol. 148(C), pages 839-854.
- Faiza Brahimi & Baya Madani & Messaouda Ghemmadi, 2022. "Comparative Thermodynamic Environmental and Economic Analyses of Combined Cycles Using Air and Supercritical CO 2 in the Bottoming Cycles for Power Generation by Gas Turbine Waste Heat Recovery," Energies, MDPI, vol. 15(23), pages 1-21, November.
- Xu, Jinliang & Sun, Enhui & Li, Mingjia & Liu, Huan & Zhu, Bingguo, 2018. "Key issues and solution strategies for supercritical carbon dioxide coal fired power plant," Energy, Elsevier, vol. 157(C), pages 227-246.
More about this item
Keywords
Calcium looping; Carbon capture; Coal-fired power plant; Supercritical CO2 cycle; Recompression Brayton cycle; Efficiency penalty reduction;All these keywords.
JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:102:y:2016:i:c:p:343-353. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.