IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v60y2016icp450-463.html
   My bibliography  Save this article

Solid oxide fuel cell operating with biomass derived producer gas: Status and challenges

Author

Listed:
  • Sharma, Monikankana
  • N, Rakesh
  • Dasappa, S.

Abstract

Solid oxide fuel cell as a conversion device is finding importance in the energy sector due to its high efficiency, low emissions and fuel flexibility. The use of producer gas as a fuel is gaining importance due to certain advantages over the conventional fuels while challenges lie in its usage due to the inherent contaminants present. This paper consolidates the efforts carried out using fossil fuels and highlights the challenges, and further, the progress made in the use of producer gas is critically examined. The effects of contaminants such as tar, particulate matter, H2S etc. on anode materials are highlighted, and the published results are consolidated to examine whether the maximum tolerance limits of the contaminants be identified. However, it is observed that due to many inexorable factors viz., differences in the electrode material, microstructure, diverse operating conditions, the conclusions obtained are diverse and it is difficult to predict the general behavior of a particular contaminant. The need for a comprehensive study having both experimental and theoretical components focusing on the role of contaminants under the same operating conditions and using the same materials is highlighted as a major conclusion of this study.

Suggested Citation

  • Sharma, Monikankana & N, Rakesh & Dasappa, S., 2016. "Solid oxide fuel cell operating with biomass derived producer gas: Status and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 450-463.
  • Handle: RePEc:eee:rensus:v:60:y:2016:i:c:p:450-463
    DOI: 10.1016/j.rser.2016.01.075
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032116001052
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.01.075?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Buragohain, Buljit & Mahanta, Pinakeswar & Moholkar, Vijayanand S., 2010. "Biomass gasification for decentralized power generation: The Indian perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 73-92, January.
    2. Liu, Ming & van der Kleij, A. & Verkooijen, A.H.M. & Aravind, P.V., 2013. "An experimental study of the interaction between tar and SOFCs with Ni/GDC anodes," Applied Energy, Elsevier, vol. 108(C), pages 149-157.
    3. Bhattacharya, S.C & Mizanur Rahman Siddique, A.H.Md & Pham, Hoang-Luong, 1999. "A study on wood gasification for low-tar gas production," Energy, Elsevier, vol. 24(4), pages 285-296.
    4. Doherty, Wayne & Reynolds, Anthony & Kennedy, David, 2010. "Computer simulation of a biomass gasification-solid oxide fuel cell power system using Aspen Plus," Energy, Elsevier, vol. 35(12), pages 4545-4555.
    5. Lee, Uisung & Balu, Elango & Chung, J.N., 2013. "An experimental evaluation of an integrated biomass gasification and power generation system for distributed power applications," Applied Energy, Elsevier, vol. 101(C), pages 699-708.
    6. Ruiz, J.A. & Juárez, M.C. & Morales, M.P. & Muñoz, P. & Mendívil, M.A., 2013. "Biomass gasification for electricity generation: Review of current technology barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 174-183.
    7. Zhou, Zhaoqiu & Yin, Xiuli & Xu, Jie & Ma, Longlong, 2012. "The development situation of biomass gasification power generation in China," Energy Policy, Elsevier, vol. 51(C), pages 52-57.
    8. Marcin Siedlecki & Wiebren De Jong & Adrian H.M. Verkooijen, 2011. "Fluidized Bed Gasification as a Mature And Reliable Technology for the Production of Bio-Syngas and Applied in the Production of Liquid Transportation Fuels—A Review," Energies, MDPI, vol. 4(3), pages 1-46, March.
    9. Shri Prakash, B. & Senthil Kumar, S. & Aruna, S.T., 2014. "Properties and development of Ni/YSZ as an anode material in solid oxide fuel cell: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 149-179.
    10. Karellas, S. & Karl, J. & Kakaras, E., 2008. "An innovative biomass gasification process and its coupling with microturbine and fuel cell systems," Energy, Elsevier, vol. 33(2), pages 284-291.
    11. Kirkels, Arjan F. & Verbong, Geert P.J., 2011. "Biomass gasification: Still promising? A 30-year global overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 471-481, January.
    12. Asadullah, Mohammad, 2014. "Biomass gasification gas cleaning for downstream applications: A comparative critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 118-132.
    13. Louis Schlapbach & Andreas Züttel, 2001. "Hydrogen-storage materials for mobile applications," Nature, Nature, vol. 414(6861), pages 353-358, November.
    14. Lucia, Umberto, 2014. "Overview on fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 164-169.
    15. Asadullah, Mohammad, 2014. "Barriers of commercial power generation using biomass gasification gas: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 201-215.
    16. Singh, Renu & Shukla, Ashish, 2014. "A review on methods of flue gas cleaning from combustion of biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 854-864.
    17. Pereira, Emanuele Graciosa & da Silva, Jadir Nogueira & de Oliveira, Jofran L. & Machado, Cássio S., 2012. "Sustainable energy: A review of gasification technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4753-4762.
    18. Bang-Møller, C. & Rokni, M. & Elmegaard, B. & Ahrenfeldt, J. & Henriksen, U.B., 2013. "Decentralized combined heat and power production by two-stage biomass gasification and solid oxide fuel cells," Energy, Elsevier, vol. 58(C), pages 527-537.
    19. Stambouli, A. Boudghene, 2011. "Fuel cells: The expectations for an environmental-friendly and sustainable source of energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4507-4520.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrzej Sitka & Wiesław Jodkowski & Piotr Szulc & Daniel Smykowski & Bogusław Szumiło, 2021. "Study of the Properties and Particulate Matter Content of the Gas from the Innovative Pilot-Scale Gasification Installation with Integrated Ceramic Filter," Energies, MDPI, vol. 14(22), pages 1-11, November.
    2. Rakesh N, & Dasappa, S., 2018. "A critical assessment of tar generated during biomass gasification - Formation, evaluation, issues and mitigation strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1045-1064.
    3. Sitka, Andrzej & Szulc, Piotr & Smykowski, Daniel & Jodkowski, Wiesław, 2021. "Application of poultry manure as an energy resource by its gasification in a prototype rotary counterflow gasifier," Renewable Energy, Elsevier, vol. 175(C), pages 422-429.
    4. Abdelkareem, Mohammad Ali & Tanveer, Waqas Hassan & Sayed, Enas Taha & Assad, M. El Haj & Allagui, Anis & Cha, S.W., 2019. "On the technical challenges affecting the performance of direct internal reforming biogas solid oxide fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 361-375.
    5. Tanveer, Waqas Hassan & Abdelkareem, Mohammad Ali & Kolosz, Ben W. & Rezk, Hegazy & Andresen, John & Cha, Suk Won & Sayed, Enas Taha, 2021. "The role of vacuum based technologies in solid oxide fuel cell development to utilize industrial waste carbon for power production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    6. Radenahmad, Nikdalila & Azad, Atia Tasfiah & Saghir, Muhammad & Taweekun, Juntakan & Bakar, Muhammad Saifullah Abu & Reza, Md Sumon & Azad, Abul Kalam, 2020. "A review on biomass derived syngas for SOFC based combined heat and power application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    7. Xu, Haoran & Chen, Bin & Tan, Peng & Zhang, Houcheng & Yuan, Jinliang & Liu, Jiang & Ni, Meng, 2017. "Performance improvement of a direct carbon solid oxide fuel cell system by combining with a Stirling cycle," Energy, Elsevier, vol. 140(P1), pages 979-987.
    8. Xu, Haoran & Chen, Bin & Tan, Peng & Sun, Qiong & Maroto-Valer, M. Mercedes & Ni, Meng, 2019. "Modelling of a hybrid system for on-site power generation from solar fuels," Applied Energy, Elsevier, vol. 240(C), pages 709-718.
    9. Jia, Junxi & Shu, Lingyun & Zang, Guiyan & Xu, Lijun & Abudula, Abuliti & Ge, Kun, 2018. "Energy analysis and techno-economic assessment of a co-gasification of woody biomass and animal manure, solid oxide fuel cells and micro gas turbine hybrid system," Energy, Elsevier, vol. 149(C), pages 750-761.
    10. Xu, Haoran & Chen, Bin & Tan, Peng & Xuan, Jin & Maroto-Valer, M. Mercedes & Farrusseng, David & Sun, Qiong & Ni, Meng, 2019. "Modeling of all-porous solid oxide fuel cells with a focus on the electrolyte porosity design," Applied Energy, Elsevier, vol. 235(C), pages 602-611.
    11. Rajabi, Mahsa & Mehrpooya, Mehdi & Haibo, Zhao & Huang, Zhen, 2019. "Chemical looping technology in CHP (combined heat and power) and CCHP (combined cooling heating and power) systems: A critical review," Applied Energy, Elsevier, vol. 253(C), pages 1-1.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rakesh N, & Dasappa, S., 2018. "A critical assessment of tar generated during biomass gasification - Formation, evaluation, issues and mitigation strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1045-1064.
    2. Ud Din, Zia & Zainal, Z.A., 2016. "Biomass integrated gasification–SOFC systems: Technology overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1356-1376.
    3. Ghulamullah Maitlo & Imran Ali & Kashif Hussain Mangi & Safdar Ali & Hubdar Ali Maitlo & Imran Nazir Unar & Abdul Majeed Pirzada, 2022. "Thermochemical Conversion of Biomass for Syngas Production: Current Status and Future Trends," Sustainability, MDPI, vol. 14(5), pages 1-30, February.
    4. ABM Abdul Malek & M Hasanuzzaman & Nasrudin A Rahim & Yusuf A Al–Turki, 2021. "Energy, economic, and environmental analysis of 10-MW biomass gasification based power generation in Malaysia," Energy & Environment, , vol. 32(2), pages 295-337, March.
    5. González, Arnau & Riba, Jordi-Roger & Puig, Rita & Navarro, Pere, 2015. "Review of micro- and small-scale technologies to produce electricity and heat from Mediterranean forests׳ wood chips," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 143-155.
    6. Samiran, Nor Afzanizam & Jaafar, Mohammad Nazri Mohd & Ng, Jo-Han & Lam, Su Shiung & Chong, Cheng Tung, 2016. "Progress in biomass gasification technique – With focus on Malaysian palm biomass for syngas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1047-1062.
    7. Pio, D.T. & Tarelho, L.A.C., 2021. "Industrial gasification systems (>3 MWth) for bioenergy in Europe: Current status and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    8. Pio, D.T. & Tarelho, L.A.C. & Pinto, R.G. & Matos, M.A.A. & Frade, J.R. & Yaremchenko, A. & Mishra, G.S. & Pinto, P.C.R., 2018. "Low-cost catalysts for in-situ improvement of producer gas quality during direct gasification of biomass," Energy, Elsevier, vol. 165(PB), pages 442-454.
    9. Pode, Ramchandra, 2016. "Potential applications of rice husk ash waste from rice husk biomass power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1468-1485.
    10. Chaves, Luiz Inácio & da Silva, Marcelo José & de Souza, Samuel Nelson Melegari & Secco, Deonir & Rosa, Helton Aparecido & Nogueira, Carlos Eduardo Camargo & Frigo, Elisandro Pires, 2016. "Small-scale power generation analysis: Downdraft gasifier coupled to engine generator set," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 491-498.
    11. Pode, Ramchandra & Diouf, Boucar & Pode, Gayatri, 2015. "Sustainable rural electrification using rice husk biomass energy: A case study of Cambodia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 530-542.
    12. Ramos, Ana & Monteiro, Eliseu & Rouboa, Abel, 2019. "Numerical approaches and comprehensive models for gasification process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 188-206.
    13. Monteiro, Eliseu & Ramos, Ana & Rouboa, Abel, 2024. "Fundamental designs of gasification plants for combined heat and power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    14. Gojiya, Anil & Deb, Dipankar & Iyer, Kannan K.R., 2019. "Feasibility study of power generation from agricultural residue in comparison with soil incorporation of residue," Renewable Energy, Elsevier, vol. 134(C), pages 416-425.
    15. Pio, D.T. & Tarelho, L.A.C. & Pinto, P.C.R., 2020. "Gasification-based biorefinery integration in the pulp and paper industry: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    16. Ma, Zhongqing & Zhang, Yimeng & Zhang, Qisheng & Qu, Yongbiao & Zhou, Jianbin & Qin, Hengfei, 2012. "Design and experimental investigation of a 190 kWe biomass fixed bed gasification and polygeneration pilot plant using a double air stage downdraft approach," Energy, Elsevier, vol. 46(1), pages 140-147.
    17. Ud Din, Zia & Zainal, Z.A., 2017. "The fate of SOFC anodes under biomass producer gas contaminants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1050-1066.
    18. Bandara, Janitha C. & Jaiswal, Rajan & Nielsen, Henrik K. & Moldestad, Britt M.E. & Eikeland, Marianne S., 2021. "Air gasification of wood chips, wood pellets and grass pellets in a bubbling fluidized bed reactor," Energy, Elsevier, vol. 233(C).
    19. Radenahmad, Nikdalila & Azad, Atia Tasfiah & Saghir, Muhammad & Taweekun, Juntakan & Bakar, Muhammad Saifullah Abu & Reza, Md Sumon & Azad, Abul Kalam, 2020. "A review on biomass derived syngas for SOFC based combined heat and power application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    20. Domenico Borello & Antonio M. Pantaleo & Michele Caucci & Benedetta De Caprariis & Paolo De Filippis & Nilay Shah, 2017. "Modeling and Experimental Study of a Small Scale Olive Pomace Gasifier for Cogeneration: Energy and Profitability Analysis," Energies, MDPI, vol. 10(12), pages 1-17, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:60:y:2016:i:c:p:450-463. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.