IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v136y2014icp465-479.html
   My bibliography  Save this article

Enhanced heat release analysis for advanced multi-mode combustion engine experiments

Author

Listed:
  • Ortiz-Soto, Elliott A.
  • Lavoie, George A.
  • Martz, Jason B.
  • Wooldridge, Margaret S.
  • Assanis, Dennis N.

Abstract

Advanced combustion strategies, such as Homogeneous-Charge Compression-Ignition (HCCI) and Spark-Assisted HCCI or Spark-Assisted Compression-Ignition (SACI) hold considerable promise for improving engine efficiencies while maintaining low pollutant emissions, yet few models exist that accurately include the important chemical and physical mechanisms of these advanced combustion strategies. Further, experimental data from advanced combustion engine experiments are not well represented using conventional spark ignited analytical tools. This paper presents new methods for advanced combustion analysis that integrate previous analytical methods with new algorithms to capture the unique features of advanced combustion strategies like SACI.

Suggested Citation

  • Ortiz-Soto, Elliott A. & Lavoie, George A. & Martz, Jason B. & Wooldridge, Margaret S. & Assanis, Dennis N., 2014. "Enhanced heat release analysis for advanced multi-mode combustion engine experiments," Applied Energy, Elsevier, vol. 136(C), pages 465-479.
  • Handle: RePEc:eee:appene:v:136:y:2014:i:c:p:465-479
    DOI: 10.1016/j.apenergy.2014.09.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914009866
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.09.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sen, A.K. & Litak, G. & Edwards, K.D. & Finney, C.E.A. & Daw, C.S. & Wagner, R.M., 2011. "Characteristics of cyclic heat release variability in the transition from spark ignition to HCCI in a gasoline engine," Applied Energy, Elsevier, vol. 88(5), pages 1649-1655, May.
    2. Komninos, N.P. & Kosmadakis, G.M., 2011. "Heat transfer in HCCI multi-zone modeling: Validation of a new wall heat flux correlation under motoring conditions," Applied Energy, Elsevier, vol. 88(5), pages 1635-1648, May.
    3. Olesky, Laura Manofsky & Martz, Jason B. & Lavoie, George A. & Vavra, Jiri & Assanis, Dennis N. & Babajimopoulos, Aristotelis, 2013. "The effects of spark timing, unburned gas temperature, and negative valve overlap on the rates of stoichiometric spark assisted compression ignition combustion," Applied Energy, Elsevier, vol. 105(C), pages 407-417.
    4. Baratta, Mirko & Misul, Daniela, 2012. "Development and assessment of a new methodology for end of combustion detection and its application to cycle resolved heat release analysis in IC engines," Applied Energy, Elsevier, vol. 98(C), pages 174-189.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christopher Depcik & Jonathan Mattson & Shah Saud Alam, 2023. "Open-Source Energy, Entropy, and Exergy 0D Heat Release Model for Internal Combustion Engines," Energies, MDPI, vol. 16(6), pages 1-30, March.
    2. Olmeda, Pablo & Martín, Jaime & Novella, Ricardo & Carreño, Ricardo, 2015. "An adapted heat transfer model for engines with tumble motion," Applied Energy, Elsevier, vol. 158(C), pages 190-202.
    3. Karvountzis-Kontakiotis, Apostolos & Ntziachristos, Leonidas, 2016. "Improvement of NO and CO predictions for a homogeneous combustion SI engine using a novel emissions model," Applied Energy, Elsevier, vol. 162(C), pages 172-182.
    4. Zhou, Lei & Song, Yuntong & Hua, Jianxiong & Liu, Fengnian & Wei, Haiqiao, 2020. "Effects of miller cycle strategies on combustion characteristics and knock resistance in a spark assisted compression ignition (SACI) engine," Energy, Elsevier, vol. 206(C).
    5. Hunicz, Jacek & Mikulski, Maciej, 2018. "Investigation of the thermal effects of fuel injection into retained residuals in HCCI engine," Applied Energy, Elsevier, vol. 228(C), pages 1966-1984.
    6. Qian, Yejian & Gong, Zhen & Shao, Xiaowei & Tao, Changfa & Zhuang, Yuan, 2019. "Numerical study of the effect of combustion chamber structure on scavenging process in a boosted GDI engine," Energy, Elsevier, vol. 168(C), pages 9-29.
    7. Xu, Yanan & Hellier, Paul & Purton, Saul & Baganz, Frank & Ladommatos, Nicos, 2016. "Algal biomass and diesel emulsions: An alternative approach for utilizing the energy content of microalgal biomass in diesel engines," Applied Energy, Elsevier, vol. 172(C), pages 80-95.
    8. Qian, Yejian & Gong, Zhen & Zhuang, Yuan & Wang, Chunmei & Zhao, Peng, 2018. "Mechanism study of scavenging process and its effect on combustion characteristics in a boosted GDI engine," Energy, Elsevier, vol. 165(PA), pages 246-266.
    9. Gentz, Gerald & Gholamisheeri, Masumeh & Toulson, Elisa, 2017. "A study of a turbulent jet ignition system fueled with iso-octane: Pressure trace analysis and combustion visualization," Applied Energy, Elsevier, vol. 189(C), pages 385-394.
    10. Han, Taehoon & Singh, Ripudaman & Lavoie, George & Wooldridge, Margaret & Boehman, André, 2020. "Multiple injection for improving knock, gaseous and particulate matter emissions in direct injection SI engines," Applied Energy, Elsevier, vol. 262(C).
    11. Dalla Nora, Macklini & Zhao, Hua, 2015. "High load performance and combustion analysis of a four-valve direct injection gasoline engine running in the two-stroke cycle," Applied Energy, Elsevier, vol. 159(C), pages 117-131.
    12. Fan, Qinhao & Liu, Shang & Qi, Yunliang & Cai, Kaiyuan & Wang, Zhi, 2021. "Investigation into ethanol effects on combustion and particle number emissions in a spark-ignition to compression-ignition (SICI) engine," Energy, Elsevier, vol. 233(C).
    13. Hunicz, Jacek & Mikulski, Maciej & Koszałka, Grzegorz & Ignaciuk, Piotr, 2020. "Detailed analysis of combustion stability in a spark-assisted compression ignition engine under nearly stoichiometric and heavy EGR conditions," Applied Energy, Elsevier, vol. 280(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Lei & Hua, Jianxiong & Wei, Haiqiao & Dong, Kai & Feng, Dengquan & Shu, Gequn, 2018. "Knock characteristics and combustion regime diagrams of multiple combustion modes based on experimental investigations," Applied Energy, Elsevier, vol. 229(C), pages 31-41.
    2. Bahri, Bahram & Shahbakhti, Mahdi & Aziz, Azhar Abdul, 2017. "Real-time modeling of ringing in HCCI engines using artificial neural networks," Energy, Elsevier, vol. 125(C), pages 509-518.
    3. Ghazimirsaied, Ahmad & Koch, Charles Robert, 2012. "Controlling cyclic combustion timing variations using a symbol-statistics predictive approach in an HCCI engine," Applied Energy, Elsevier, vol. 92(C), pages 133-146.
    4. Jung, Dongwon & Iida, Norimasa, 2015. "Closed-loop control of HCCI combustion for DME using external EGR and rebreathed EGR to reduce pressure-rise rate with combustion-phasing retard," Applied Energy, Elsevier, vol. 138(C), pages 315-330.
    5. Xie, Hui & Li, Le & Chen, Tao & Yu, Weifei & Wang, Xinyan & Zhao, Hua, 2013. "Study on spark assisted compression ignition (SACI) combustion with positive valve overlap at medium–high load," Applied Energy, Elsevier, vol. 101(C), pages 622-633.
    6. Yang, Hongqiang & Wang, Zhi & Shuai, Shijin & Wang, Jianxin & Xu, Hongming & Wang, Buyu, 2015. "Temporally and spatially distributed combustion in low-octane gasoline multiple premixed compression ignition mode," Applied Energy, Elsevier, vol. 150(C), pages 150-160.
    7. Zhou, Lei & Song, Yuntong & Hua, Jianxiong & Liu, Fengnian & Wei, Haiqiao, 2020. "Effects of miller cycle strategies on combustion characteristics and knock resistance in a spark assisted compression ignition (SACI) engine," Energy, Elsevier, vol. 206(C).
    8. Andwari, Amin Mahmoudzadeh & Aziz, Azhar Abdul & Said, Mohd Farid Muhamad & Latiff, Zulkarnain Abdul, 2014. "Experimental investigation of the influence of internal and external EGR on the combustion characteristics of a controlled auto-ignition two-stroke cycle engine," Applied Energy, Elsevier, vol. 134(C), pages 1-10.
    9. Kung, Kevin S. & Thengane, Sonal K. & Ghoniem, Ahmed F. & Lim, C. Jim & Cao, Yankai & Sokhansanj, Shahabaddine, 2022. "Start-up, shutdown, and transition timescale analysis in biomass reactor operations," Energy, Elsevier, vol. 248(C).
    10. Wang, Xinyan & Zhao, Hua & Xie, Hui, 2016. "Effect of dilution strategies and direct injection ratios on stratified flame ignition (SFI) hybrid combustion in a PFI/DI gasoline engine," Applied Energy, Elsevier, vol. 165(C), pages 801-814.
    11. Hairuddin, A. Aziz & Yusaf, Talal & Wandel, Andrew P., 2014. "A review of hydrogen and natural gas addition in diesel HCCI engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 739-761.
    12. Irimescu, Adrian & Vasiu, Gabriel & Tordai, Gavrilă Trif, 2014. "Performance and emissions of a small scale generator powered by a spark ignition engine with adaptive fuel injection control," Applied Energy, Elsevier, vol. 121(C), pages 196-206.
    13. Liu, Shang & Lin, Zhelong & Zhang, Hao & Lei, Nuo & Qi, Yunliang & Wang, Zhi, 2023. "Impact of ammonia addition on knock resistance and combustion performance in a gasoline engine with high compression ratio," Energy, Elsevier, vol. 262(PA).
    14. Pachiannan, Tamilselvan & Zhong, Wenjun & Rajkumar, Sundararajan & He, Zhixia & Leng, Xianying & Wang, Qian, 2019. "A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    15. Chen, Tao & Xie, Hui & Li, Le & Zhang, Lianfang & Wang, Xinyan & Zhao, Hua, 2014. "Methods to achieve HCCI/CAI combustion at idle operation in a 4VVAS gasoline engine," Applied Energy, Elsevier, vol. 116(C), pages 41-51.
    16. Song, Kang & Wang, Xinyan & Xie, Hui, 2018. "Trade-off on fuel economy, knock, and combustion stability for a stratified flame-ignited gasoline engine," Applied Energy, Elsevier, vol. 220(C), pages 437-446.
    17. Chen, Lin & Zhang, Ren & Pan, Jiaying & Wei, Haiqiao, 2020. "Effects of partitioned fuel distribution on auto-ignition and knocking under spark assisted compression ignition conditions," Applied Energy, Elsevier, vol. 260(C).
    18. Monteiro, Eliseu & Rouboa, Abel & Bellenoue, Marc & Boust, Bastien & Sotton, Julien, 2014. "Multi-zone modeling and simulation of syngas combustion under laminar conditions," Applied Energy, Elsevier, vol. 114(C), pages 724-734.
    19. Zhao, Junfeng & Wang, Junmin, 2013. "Control-oriented multi-phase combustion model for biodiesel fueled engines," Applied Energy, Elsevier, vol. 108(C), pages 92-99.
    20. Bissoli, M. & Frassoldati, A. & Cuoci, A. & Ranzi, E. & Mehl, M. & Faravelli, T., 2016. "A new predictive multi-zone model for HCCI engine combustion," Applied Energy, Elsevier, vol. 178(C), pages 826-843.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:136:y:2014:i:c:p:465-479. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.