IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v248y2022ics0360544222003516.html
   My bibliography  Save this article

Start-up, shutdown, and transition timescale analysis in biomass reactor operations

Author

Listed:
  • Kung, Kevin S.
  • Thengane, Sonal K.
  • Ghoniem, Ahmed F.
  • Lim, C. Jim
  • Cao, Yankai
  • Sokhansanj, Shahabaddine

Abstract

The time required to achieve steady state operation is an important factor in biomass conversion reactors, especially at a pilot or higher scale. The present work analyses the start-up, shutdown, and transient timescales of the laboratory-scale biomass reactor set-up using theoretical framework, for the case study of biomass torrefaction. The experimental time series temperature data is analyzed to infer the transient behaviors of the reactor, as well as how it changes with reactor scaling. Thermal mass of the reactor played a significant part in the reactor's temporal response to changes, and it was demonstrated to possibly achieve a reasonable temporal response time at scale. A series of start-up and cooling operation strategies are devised to optimize the time and feedstock consumption requirements. The learning is applied to the case of transitioning between two reactor operating conditions where rapid start-up or cooling procedure proved more time-efficient and feedstock-efficient. The insights learned provide a basis for a more comprehensive study of the reactor transitional operations that can be encapsulated into an automated control system to minimize human intervention.

Suggested Citation

  • Kung, Kevin S. & Thengane, Sonal K. & Ghoniem, Ahmed F. & Lim, C. Jim & Cao, Yankai & Sokhansanj, Shahabaddine, 2022. "Start-up, shutdown, and transition timescale analysis in biomass reactor operations," Energy, Elsevier, vol. 248(C).
  • Handle: RePEc:eee:energy:v:248:y:2022:i:c:s0360544222003516
    DOI: 10.1016/j.energy.2022.123448
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222003516
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123448?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tu, Ren & Sun, Yan & Wu, Yujian & Fan, Xudong & cheng, Shuchao & Jiang, Enchen & Xu, Xiwei, 2022. "The fuel properties and adsorption capacities of torrefied camellia shell obtained via different steam-torrefaction reactors," Energy, Elsevier, vol. 238(PC).
    2. Wienchol, Paulina & Szlęk, Andrzej & Ditaranto, Mario, 2020. "Waste-to-energy technology integrated with carbon capture – Challenges and opportunities," Energy, Elsevier, vol. 198(C).
    3. Juwairia Obaid & Ashraf Ramadan & Ali Elkamel & William Anderson, 2017. "Comparing Non-Steady State Emissions under Start-Up and Shut-Down Operating Conditions with Steady State Emissions for Several Industrial Sectors: A Literature Review," Energies, MDPI, vol. 10(2), pages 1-15, February.
    4. Samal, Biswajit & Vanapalli, Kumar Raja & Dubey, Brajesh Kumar & Bhattacharya, Jayanta & Chandra, Subhash & Medha, Isha, 2021. "Influence of process parameters on thermal characteristics of char from co-pyrolysis of eucalyptus biomass and polystyrene: Its prospects as a solid fuel," Energy, Elsevier, vol. 232(C).
    5. Li, Jin & Wang, Rui & Li, Haoran & Nie, Yaoyu & Song, Xinke & Li, Mingyu & Shi, Mai & Zheng, Xinzhu & Cai, Wenjia & Wang, Can, 2021. "Unit-level cost-benefit analysis for coal power plants retrofitted with biomass co-firing at a national level by combined GIS and life cycle assessment," Applied Energy, Elsevier, vol. 285(C).
    6. Komninos, N.P. & Kosmadakis, G.M., 2011. "Heat transfer in HCCI multi-zone modeling: Validation of a new wall heat flux correlation under motoring conditions," Applied Energy, Elsevier, vol. 88(5), pages 1635-1648, May.
    7. Zhang, Lizhi & Kuang, Jiyuan & Sun, Bo & Li, Fan & Zhang, Chenghui, 2020. "A two-stage operation optimization method of integrated energy systems with demand response and energy storage," Energy, Elsevier, vol. 208(C).
    8. Mertens, Nicolas & Alobaid, Falah & Starkloff, Ralf & Epple, Bernd & Kim, Hyun-Gee, 2015. "Comparative investigation of drum-type and once-through heat recovery steam generator during start-up," Applied Energy, Elsevier, vol. 144(C), pages 250-260.
    9. Kung, Kevin S. & Ghoniem, Ahmed F., 2019. "Multi-scale analysis of drying thermally thick biomass for bioenergy applications," Energy, Elsevier, vol. 187(C).
    10. Ghazimirsaied, Ahmad & Koch, Charles Robert, 2012. "Controlling cyclic combustion timing variations using a symbol-statistics predictive approach in an HCCI engine," Applied Energy, Elsevier, vol. 92(C), pages 133-146.
    11. Horst, Tilmann Abbe & Rottengruber, Hermann-Sebastian & Seifert, Marco & Ringler, Jürgen, 2013. "Dynamic heat exchanger model for performance prediction and control system design of automotive waste heat recovery systems," Applied Energy, Elsevier, vol. 105(C), pages 293-303.
    12. Kung, Kevin S. & Thengane, Sonal K. & Shanbhogue, Santosh & Ghoniem, Ahmed F., 2019. "Parametric analysis of torrefaction reactor operating under oxygen-lean conditions," Energy, Elsevier, vol. 181(C), pages 603-614.
    13. Primaz, Carmem T. & Ribes-Greus, Amparo & Jacques, Rosângela A., 2021. "Valorization of cotton residues for production of bio-oil and engineered biochar," Energy, Elsevier, vol. 235(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Claudio, Caio C. & Perazzini, MaisaT.B. & Perazzini, Hugo, 2022. "Modeling and estimation of moisture transport properties of drying of potential Amazon biomass for renewable energy: Application of the two-compartment approach and diffusive models with constant or m," Renewable Energy, Elsevier, vol. 181(C), pages 304-316.
    2. Ghazimirsaied, Ahmad & Koch, Charles Robert, 2012. "Controlling cyclic combustion timing variations using a symbol-statistics predictive approach in an HCCI engine," Applied Energy, Elsevier, vol. 92(C), pages 133-146.
    3. Huang, Shengxiong & Lei, Can & Qin, Jie & Yi, Cheng & Chen, Tao & Yao, Lingling & Li, Bo & Wen, Yujiao & Zhou, Zhi & Xia, Mao, 2022. "Properties, kinetics and pyrolysis products distribution of oxidative torrefied camellia shell in different oxygen concentration," Energy, Elsevier, vol. 251(C).
    4. Jung, Dongwon & Iida, Norimasa, 2015. "Closed-loop control of HCCI combustion for DME using external EGR and rebreathed EGR to reduce pressure-rise rate with combustion-phasing retard," Applied Energy, Elsevier, vol. 138(C), pages 315-330.
    5. Khasanzoda, Nasrullo & Safaraliev, Murodbek & Zicmane, Inga & Beryozkina, Svetlana & Rahimov, Jamshed & Ahyoev, Javod, 2022. "Use of smart grid based wind resources in isolated power systems," Energy, Elsevier, vol. 253(C).
    6. Zhang, Yun-Long & Liu, Lan-Cui & Kang, Jia-Ning & Peng, Song & Mi, Zhifu & Liao, Hua & Wei, Yi-Ming, 2024. "Economic feasibility assessment of coal-biomass co-firing power generation technology," Energy, Elsevier, vol. 296(C).
    7. Ali Elkamel, 2018. "Energy Production Systems," Energies, MDPI, vol. 11(10), pages 1-4, September.
    8. Wang, Ying & Xiao, Fan & Zhao, Yuwei & Li, Dongchang & Lei, Xiong, 2015. "Study on cycle-by-cycle variations in a diesel engine with dimethyl ether as port premixing fuel," Applied Energy, Elsevier, vol. 143(C), pages 58-70.
    9. Michele Bertone & Luca Stabile & Giorgio Buonanno, 2024. "An Overview of Waste-to-Energy Incineration Integrated with Carbon Capture Utilization or Storage Retrofit Application," Sustainability, MDPI, vol. 16(10), pages 1-19, May.
    10. Andwari, Amin Mahmoudzadeh & Aziz, Azhar Abdul & Said, Mohd Farid Muhamad & Latiff, Zulkarnain Abdul, 2014. "Experimental investigation of the influence of internal and external EGR on the combustion characteristics of a controlled auto-ignition two-stroke cycle engine," Applied Energy, Elsevier, vol. 134(C), pages 1-10.
    11. Fan Li & Jingxi Su & Bo Sun, 2023. "An Optimal Scheduling Method for an Integrated Energy System Based on an Improved k-Means Clustering Algorithm," Energies, MDPI, vol. 16(9), pages 1-22, April.
    12. Huang, Qian & Xu, Jiuping, 2023. "Carbon tax revenue recycling for biomass/coal co-firing using Stackelberg game: A case study of Jiangsu province, China," Energy, Elsevier, vol. 272(C).
    13. Taler, Jan & Taler, Dawid & Kaczmarski, Karol & Dzierwa, Piotr & Trojan, Marcin & Sobota, Tomasz, 2018. "Monitoring of thermal stresses in pressure components based on the wall temperature measurement," Energy, Elsevier, vol. 160(C), pages 500-519.
    14. Maurya, Rakesh Kumar & Agarwal, Avinash Kumar, 2013. "Experimental investigation of cyclic variations in HCCI combustion parameters for gasoline like fuels using statistical methods," Applied Energy, Elsevier, vol. 111(C), pages 310-323.
    15. Wang, Xuan & Shu, Gequn & Tian, Hua & Liu, Peng & Jing, Dongzhan & Li, Xiaoya, 2018. "The effects of design parameters on the dynamic behavior of organic ranking cycle for the engine waste heat recovery," Energy, Elsevier, vol. 147(C), pages 440-450.
    16. Wang, Qiaochu & Ding, Yan & Kong, Xiangfei & Tian, Zhe & Xu, Linrui & He, Qing, 2022. "Load pattern recognition based optimization method for energy flexibility in office buildings," Energy, Elsevier, vol. 254(PC).
    17. Israel Reyes-Ramírez & Santiago D. Martínez-Boggio & Pedro L. Curto-Risso & Alejandro Medina & Antonio Calvo Hernández & Lev Guzmán-Vargas, 2018. "Symbolic Analysis of the Cycle-to-Cycle Variability of a Gasoline–Hydrogen Fueled Spark Engine Model," Energies, MDPI, vol. 11(4), pages 1-19, April.
    18. Angerer, Michael & Kahlert, Steffen & Spliethoff, Hartmut, 2017. "Transient simulation and fatigue evaluation of fast gas turbine startups and shutdowns in a combined cycle plant with an innovative thermal buffer storage," Energy, Elsevier, vol. 130(C), pages 246-257.
    19. Zhao, Tian & Li, Hang & Li, Xia & Sun, Qing-Han & Fang, Xuan-Yi & Ma, Huan & Chen, Qun, 2024. "A frequency domain dynamic simulation method for heat exchangers and thermal systems," Energy, Elsevier, vol. 286(C).
    20. Shu, Gequn & Wang, Rui & Tian, Hua & Wang, Xuan & Li, Xiaoya & Cai, Jinwen & Xu, Zhiqiang, 2020. "Dynamic performance of the transcritical power cycle using CO2-based binary zeotropic mixtures for truck engine waste heat recovery," Energy, Elsevier, vol. 194(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:248:y:2022:i:c:s0360544222003516. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.