Synergetic mechanism of methanol–steam reforming reaction in a catalytic reactor with electric discharges
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2013.09.023
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Taghvaei, Hamed & Shirazi, Meisam Mohamadzadeh & Hooshmand, Navid & Rahimpour, Mohammad Reza & Jahanmiri, Abdolhossien, 2012. "Experimental investigation of hydrogen production through heavy naphtha cracking in pulsed DBD reactor," Applied Energy, Elsevier, vol. 98(C), pages 3-10.
- Chein, Reiyu & Chen, Yen-Cho & Chung, J.N., 2013. "Numerical study of methanol–steam reforming and methanol–air catalytic combustion in annulus reactors for hydrogen production," Applied Energy, Elsevier, vol. 102(C), pages 1022-1034.
- Fujishima, Hidekatsu & Takekoshi, Kenichi & Kuroki, Tomoyuki & Tanaka, Atsushi & Otsuka, Keiichi & Okubo, Masaaki, 2013. "Towards ideal NOx control technology for bio-oils and a gas multi-fuel boiler system using a plasma-chemical hybrid process," Applied Energy, Elsevier, vol. 111(C), pages 394-400.
- Linga Reddy, E. & Biju, V.M. & Subrahmanyam, Ch., 2012. "Production of hydrogen and sulfur from hydrogen sulfide assisted by nonthermal plasma," Applied Energy, Elsevier, vol. 95(C), pages 87-92.
- Rahimpour, Mohammad Reza & Jafari, Mitra & Iranshahi, Davood, 2013. "Progress in catalytic naphtha reforming process: A review," Applied Energy, Elsevier, vol. 109(C), pages 79-93.
- Chein, Rei-Yu & Chen, Yen-Cho & Chang, Che-Ming & Chung, J.N., 2013. "Experimental study on the performance of hydrogen production from miniature methanol–steam reformer integrated with Swiss-roll type combustor for PEMFC," Applied Energy, Elsevier, vol. 105(C), pages 86-98.
- Zeng, Dehuai & Pan, Minqiang & Wang, Liming & Tang, Yong, 2012. "Fabrication and characteristics of cube-post microreactors for methanol steam reforming," Applied Energy, Elsevier, vol. 91(1), pages 208-213.
- Li, Chunlin & Xu, Hengyong & Hou, Shoufu & Sun, Jian & Meng, Fanqiong & Ma, Junguo & Tsubaki, Noritatsu, 2013. "SiC foam monolith catalyst for pressurized adiabatic methane reforming," Applied Energy, Elsevier, vol. 107(C), pages 297-303.
- Ding, Mingyue & Hayakawa, Taichi & Zeng, Chunyang & Jin, Yuzhou & Zhang, Qi & Wang, Tiejun & Ma, Longlong & Yoneyama, Yoshiharu & Tsubaki, Noritatsu, 2013. "Direct conversion of liquid natural gas (LNG) to syngas and ethylene using non-equilibrium pulsed discharge," Applied Energy, Elsevier, vol. 104(C), pages 777-782.
- Kwak, Byeong Sub & Lee, Jun Su & Lee, Jun Sung & Choi, Byung-Hyun & Ji, Mi Jung & Kang, Misook, 2011. "Hydrogen-rich gas production from ethanol steam reforming over Ni/Ga/Mg/Zeolite Y catalysts at mild temperature," Applied Energy, Elsevier, vol. 88(12), pages 4366-4375.
- Wijaya, Willy Yanto & Kawasaki, Shunsuke & Watanabe, Hirotatsu & Okazaki, Ken, 2012. "Damköhler number as a descriptive parameter in methanol steam reforming and its integration with absorption heat pump system," Applied Energy, Elsevier, vol. 94(C), pages 141-147.
- Hsueh, Ching-Yi & Chu, Hsin-Sen & Yan, Wei-Mon & Chen, Chiun-Hsun, 2010. "Transport phenomena and performance of a plate methanol steam micro-reformer with serpentine flow field design," Applied Energy, Elsevier, vol. 87(10), pages 3137-3147, October.
- Perng, Shiang-Wuu & Horng, Rong-Fang & Ku, Hui-Wen, 2013. "Effects of reaction chamber geometry on the performance and heat/mass transport phenomenon for a cylindrical methanol steam reformer," Applied Energy, Elsevier, vol. 103(C), pages 317-327.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Song, Chunfeng & Liu, Qingling & Ji, Na & Kansha, Yasuki & Tsutsumi, Atsushi, 2015. "Optimization of steam methane reforming coupled with pressure swing adsorption hydrogen production process by heat integration," Applied Energy, Elsevier, vol. 154(C), pages 392-401.
- Xin, Yanbin & Sun, Bing & Zhu, Xiaomei & Yan, Zhiyu & Zhao, Xiaotong & Sun, Xiaohang, 2017. "Hydrogen production from ethanol decomposition by pulsed discharge with needle-net configurations," Applied Energy, Elsevier, vol. 206(C), pages 126-133.
- Radenahmad, Nikdalila & Afif, Ahmed & Petra, Pg Iskandar & Rahman, Seikh M.H. & Eriksson, Sten-G. & Azad, Abul K., 2016. "Proton-conducting electrolytes for direct methanol and direct urea fuel cells – A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1347-1358.
- Lu, Buchu & Yan, Xiangyu & Liu, Qibin, 2023. "Enhanced solar hydrogen generation with the direct coupling of photo and thermal energy – An experimental and mechanism study," Applied Energy, Elsevier, vol. 331(C).
- Ochoa, Aitor & Bilbao, Javier & Gayubo, Ana G. & Castaño, Pedro, 2020. "Coke formation and deactivation during catalytic reforming of biomass and waste pyrolysis products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
- Ehteshami, S. Mohsen Mousavi & Vignesh, S. & Rasheed, R.K.A. & Chan, S.H., 2016. "Numerical investigations on ethanol electrolysis for production of pure hydrogen from renewable sources," Applied Energy, Elsevier, vol. 170(C), pages 388-393.
- Du, ChangMing & Mo, JianMin & Tang, Jun & Huang, DongWei & Mo, ZhiXing & Wang, QingKun & Ma, ShiZhe & Chen, ZhongJie, 2014. "Plasma reforming of bio-ethanol for hydrogen rich gas production," Applied Energy, Elsevier, vol. 133(C), pages 70-79.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Li, Chunlin & Xu, Hengyong & Hou, Shoufu & Sun, Jian & Meng, Fanqiong & Ma, Junguo & Tsubaki, Noritatsu, 2013. "SiC foam monolith catalyst for pressurized adiabatic methane reforming," Applied Energy, Elsevier, vol. 107(C), pages 297-303.
- Perng, Shiang-Wuu & Horng, Rong-Fang & Wu, Horng-Wen, 2017. "Effect of a diffuser on performance enhancement of a cylindrical methanol steam reformer by computational fluid dynamic analysis," Applied Energy, Elsevier, vol. 206(C), pages 312-328.
- Perng, Shiang-Wuu & Wu, Horng-Wen, 2022. "Influence of inlet-nozzle and outlet-diffuser mounted in the plate-shape reactor on PEMFC net power output and methanol steam reforming performance," Applied Energy, Elsevier, vol. 323(C).
- Mohammed Abbas, Akhtar Hasnain & Cheralathan, Kanakkampalayam Krishnan & Porpatham, Ekambaram & Arumugam, Senthil Kumar, 2024. "Hydrogen generation using methanol steam reforming – catalysts, reactors, and thermo-chemical recuperation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
- Wang, Qing-Hui & Yang, Song & Zhou, Wei & Li, Jing-Rong & Xu, Zhi-Jia & Ke, Yu-Zhi & Yu, Wei & Hu, Guang-Hua, 2018. "Optimizing the porosity configuration of porous copper fiber sintered felt for methanol steam reforming micro-reactor based on flow distribution," Applied Energy, Elsevier, vol. 216(C), pages 243-261.
- Khalifeh, Omid & Mosallanejad, Amin & Taghvaei, Hamed & Rahimpour, Mohammad Reza & Shariati, Alireza, 2016. "Decomposition of methane to hydrogen using nanosecond pulsed plasma reactor with different active volumes, voltages and frequencies," Applied Energy, Elsevier, vol. 169(C), pages 585-596.
- Lo, An-Ya & Hung, Chin-Te & Yu, Ningya & Kuo, Cheng-Tzu & Liu, Shang-Bin, 2012. "Syntheses of carbon porous materials with varied pore sizes and their performances as catalyst supports during methanol oxidation reaction," Applied Energy, Elsevier, vol. 100(C), pages 66-74.
- Wijaya, Willy Yanto & Kawasaki, Shunsuke & Watanabe, Hirotatsu & Okazaki, Ken, 2012. "Damköhler number as a descriptive parameter in methanol steam reforming and its integration with absorption heat pump system," Applied Energy, Elsevier, vol. 94(C), pages 141-147.
- Cheng, Chin-Hsiang & Huang, Yu-Xian & King, Shun-Chih & Lee, Chun-I & Leu, Chih-Hsing, 2014. "CFD (computational fluid dynamics)-based optimal design of a micro-reformer by integrating computational a fluid dynamics code using a simplified conjugate-gradient method," Energy, Elsevier, vol. 70(C), pages 355-365.
- Walluk, Mark R. & Lin, Jiefeng & Waller, Michael G. & Smith, Daniel F. & Trabold, Thomas A., 2014. "Diesel auto-thermal reforming for solid oxide fuel cell systems: Anode off-gas recycle simulation," Applied Energy, Elsevier, vol. 130(C), pages 94-102.
- Wang, Yancheng & Liu, Haiyu & Mei, Deqing & Yu, Shizheng, 2022. "Direct ink writing of 3D SiC scaffold as catalyst support for thermally autonomous methanol steam reforming microreactor," Renewable Energy, Elsevier, vol. 187(C), pages 923-932.
- Rahimpour, Mohammad Reza & Jafari, Mitra & Iranshahi, Davood, 2013. "Progress in catalytic naphtha reforming process: A review," Applied Energy, Elsevier, vol. 109(C), pages 79-93.
- Xin, Yanbin & Sun, Bing & Zhu, Xiaomei & Yan, Zhiyu & Zhao, Xiaotong & Sun, Xiaohang, 2017. "Hydrogen production from ethanol decomposition by pulsed discharge with needle-net configurations," Applied Energy, Elsevier, vol. 206(C), pages 126-133.
- Wu, Angjian & Li, Xiaodong & Yan, Jianhua & Yang, Jian & Du, Changming & Zhu, Fengsen & Qian, Jinyuan, 2017. "Co-generation of hydrogen and carbon aerosol from coalbed methane surrogate using rotating gliding arc plasma," Applied Energy, Elsevier, vol. 195(C), pages 67-79.
- Wang, Tiejun & Yang, Yong & Ding, Mingyue & Liu, Qiying & Ma, Longlong, 2013. "Auto-thermal reforming of biomass raw fuel gas to syngas in a novel reformer: Promotion of hot-electron," Applied Energy, Elsevier, vol. 112(C), pages 448-453.
- Niknezhad, Shayan S. & Staack, David & Pistikopoulos, Efstratios N., 2024. "Natural gas to hydrogen via a novel process intensified plasma-based reformer," Applied Energy, Elsevier, vol. 373(C).
- Chen, Wei-Hsin & Chen, Chia-Yang, 2020. "Water gas shift reaction for hydrogen production and carbon dioxide capture: A review," Applied Energy, Elsevier, vol. 258(C).
- Perng, Shiang-Wuu & Horng, Rong-Fang & Ku, Hui-Wen, 2013. "Effects of reaction chamber geometry on the performance and heat/mass transport phenomenon for a cylindrical methanol steam reformer," Applied Energy, Elsevier, vol. 103(C), pages 317-327.
- Xin, Yanbin & Sun, Bing & Zhu, Xiaomei & Yan, Zhiyu & Liu, Yongjun & Liu, Hui, 2016. "Characteristics of hydrogen produced by pulsed discharge in ethanol solution," Applied Energy, Elsevier, vol. 168(C), pages 122-129.
- Li, Xingxing & Zhu, Gangli & Qi, Suitao & Huang, Jun & Yang, Bolun, 2014. "Simultaneous production of hythane and carbon nanotubes via catalytic decomposition of methane with catalysts dispersed on porous supports," Applied Energy, Elsevier, vol. 130(C), pages 846-852.
More about this item
Keywords
Electric discharge; Methanol–steam reforming; Hydrogen production; Plasma reforming; Reaction mechanism;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:113:y:2014:i:c:p:1692-1699. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.