IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v98y2012icp3-10.html
   My bibliography  Save this article

Experimental investigation of hydrogen production through heavy naphtha cracking in pulsed DBD reactor

Author

Listed:
  • Taghvaei, Hamed
  • Shirazi, Meisam Mohamadzadeh
  • Hooshmand, Navid
  • Rahimpour, Mohammad Reza
  • Jahanmiri, Abdolhossien

Abstract

Cracking of heavy naphtha is studied experimentally in a nanosecond pulsed DBD plasma reactor. The system has been evaluated for instant production of light gaseous hydrocarbons in the range of C1–C3 and hydrogen via continuous hydrocarbons cracking at room temperature and atmospheric pressure. The effect of some process parameters such as reactor geometry/gap distance, carrier gas and feed flow rates have been considered on the reactor performance, experimentally. Results indicate that the less carrier gas and feed flow rates cause more energy efficiency. The maximum process efficiency is found for carrier gas and feed flow rates of 50 and 1ml/min, respectively, which gets higher to 106.23l/kWh for 11.50W input power and 1.35mm inner electrode diameter. Furthermore, results proof that for cracking process in DBD reactors there is an optimum diameter to maximize the process efficiency. For the reactor studied here, the optimum diameter of inner electrode is 2.68mm. In this case energy efficiency of the process is 159.29l/kWh. Results indicates that the hydrocarbon product distribution during the process is C2>C1≫C3>C4.

Suggested Citation

  • Taghvaei, Hamed & Shirazi, Meisam Mohamadzadeh & Hooshmand, Navid & Rahimpour, Mohammad Reza & Jahanmiri, Abdolhossien, 2012. "Experimental investigation of hydrogen production through heavy naphtha cracking in pulsed DBD reactor," Applied Energy, Elsevier, vol. 98(C), pages 3-10.
  • Handle: RePEc:eee:appene:v:98:y:2012:i:c:p:3-10
    DOI: 10.1016/j.apenergy.2012.02.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261912000979
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2012.02.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kwak, Byeong Sub & Lee, Jun Su & Lee, Jun Sung & Choi, Byung-Hyun & Ji, Mi Jung & Kang, Misook, 2011. "Hydrogen-rich gas production from ethanol steam reforming over Ni/Ga/Mg/Zeolite Y catalysts at mild temperature," Applied Energy, Elsevier, vol. 88(12), pages 4366-4375.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rahimpour, Mohammad Reza & Jafari, Mitra & Iranshahi, Davood, 2013. "Progress in catalytic naphtha reforming process: A review," Applied Energy, Elsevier, vol. 109(C), pages 79-93.
    2. Ding, Mingyue & Hayakawa, Taichi & Zeng, Chunyang & Jin, Yuzhou & Zhang, Qi & Wang, Tiejun & Ma, Longlong & Yoneyama, Yoshiharu & Tsubaki, Noritatsu, 2013. "Direct conversion of liquid natural gas (LNG) to syngas and ethylene using non-equilibrium pulsed discharge," Applied Energy, Elsevier, vol. 104(C), pages 777-782.
    3. Xin, Yanbin & Sun, Bing & Zhu, Xiaomei & Yan, Zhiyu & Zhao, Xiaotong & Sun, Xiaohang, 2017. "Hydrogen production from ethanol decomposition by pulsed discharge with needle-net configurations," Applied Energy, Elsevier, vol. 206(C), pages 126-133.
    4. Xia, Ao & Cheng, Jun & Ding, Lingkan & Lin, Richen & Song, Wenlu & Zhou, Junhu & Cen, Kefa, 2014. "Enhancement of energy production efficiency from mixed biomass of Chlorella pyrenoidosa and cassava starch through combined hydrogen fermentation and methanogenesis," Applied Energy, Elsevier, vol. 120(C), pages 23-30.
    5. Xin, Yanbin & Sun, Bing & Zhu, Xiaomei & Yan, Zhiyu & Liu, Yongjun & Liu, Hui, 2016. "Characteristics of hydrogen produced by pulsed discharge in ethanol solution," Applied Energy, Elsevier, vol. 168(C), pages 122-129.
    6. Rincón, R. & Muñoz, J. & Morales-Calero, F.J. & Orejas, J. & Calzada, M.D., 2021. "Assessment of two atmospheric-pressure microwave plasma sources for H2 production from ethanol decomposition," Applied Energy, Elsevier, vol. 294(C).
    7. Wu, Angjian & Li, Xiaodong & Yan, Jianhua & Yang, Jian & Du, Changming & Zhu, Fengsen & Qian, Jinyuan, 2017. "Co-generation of hydrogen and carbon aerosol from coalbed methane surrogate using rotating gliding arc plasma," Applied Energy, Elsevier, vol. 195(C), pages 67-79.
    8. Khalifeh, Omid & Mosallanejad, Amin & Taghvaei, Hamed & Rahimpour, Mohammad Reza & Shariati, Alireza, 2016. "Decomposition of methane to hydrogen using nanosecond pulsed plasma reactor with different active volumes, voltages and frequencies," Applied Energy, Elsevier, vol. 169(C), pages 585-596.
    9. Kim, Taegyu & Jo, Sungkwon & Song, Young-Hoon & Lee, Dae Hoon, 2014. "Synergetic mechanism of methanol–steam reforming reaction in a catalytic reactor with electric discharges," Applied Energy, Elsevier, vol. 113(C), pages 1692-1699.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Walluk, Mark R. & Lin, Jiefeng & Waller, Michael G. & Smith, Daniel F. & Trabold, Thomas A., 2014. "Diesel auto-thermal reforming for solid oxide fuel cell systems: Anode off-gas recycle simulation," Applied Energy, Elsevier, vol. 130(C), pages 94-102.
    2. Li, Chunlin & Xu, Hengyong & Hou, Shoufu & Sun, Jian & Meng, Fanqiong & Ma, Junguo & Tsubaki, Noritatsu, 2013. "SiC foam monolith catalyst for pressurized adiabatic methane reforming," Applied Energy, Elsevier, vol. 107(C), pages 297-303.
    3. Saebea, Dang & Authayanun, Suthida & Patcharavorachot, Yaneeporn & Paengjuntuek, Woranee & Arpornwichanop, Amornchai, 2013. "Use of different renewable fuels in a steam reformer integrated into a solid oxide fuel cell: Theoretical analysis and performance comparison," Energy, Elsevier, vol. 51(C), pages 305-313.
    4. Esteban-Díez, G. & Gil, María V. & Pevida, C. & Chen, D. & Rubiera, F., 2016. "Effect of operating conditions on the sorption enhanced steam reforming of blends of acetic acid and acetone as bio-oil model compounds," Applied Energy, Elsevier, vol. 177(C), pages 579-590.
    5. Lee, Jun Sung & Han, Gi Bo & Kang, Misook, 2012. "Low temperature steam reforming of ethanol for carbon monoxide-free hydrogen production over mesoporous Sn-incorporated SBA-15 catalysts," Energy, Elsevier, vol. 44(1), pages 248-256.
    6. Kim, Taegyu & Jo, Sungkwon & Song, Young-Hoon & Lee, Dae Hoon, 2014. "Synergetic mechanism of methanol–steam reforming reaction in a catalytic reactor with electric discharges," Applied Energy, Elsevier, vol. 113(C), pages 1692-1699.
    7. Li, Xingxing & Zhu, Gangli & Qi, Suitao & Huang, Jun & Yang, Bolun, 2014. "Simultaneous production of hythane and carbon nanotubes via catalytic decomposition of methane with catalysts dispersed on porous supports," Applied Energy, Elsevier, vol. 130(C), pages 846-852.
    8. Lo, An-Ya & Hung, Chin-Te & Yu, Ningya & Kuo, Cheng-Tzu & Liu, Shang-Bin, 2012. "Syntheses of carbon porous materials with varied pore sizes and their performances as catalyst supports during methanol oxidation reaction," Applied Energy, Elsevier, vol. 100(C), pages 66-74.
    9. Hwangbo, Soonho & Lee, In-Beum & Han, Jeehoon, 2017. "Mathematical model to optimize design of integrated utility supply network and future global hydrogen supply network under demand uncertainty," Applied Energy, Elsevier, vol. 195(C), pages 257-267.
    10. Wijaya, Willy Yanto & Kawasaki, Shunsuke & Watanabe, Hirotatsu & Okazaki, Ken, 2012. "Damköhler number as a descriptive parameter in methanol steam reforming and its integration with absorption heat pump system," Applied Energy, Elsevier, vol. 94(C), pages 141-147.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:98:y:2012:i:c:p:3-10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.