Numerical study of methanol–steam reforming and methanol–air catalytic combustion in annulus reactors for hydrogen production
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2012.06.010
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Hajizadeh, Abdollah & Mohamadi-Baghmolaei, Mohamad & Cata Saady, Noori M. & Zendehboudi, Sohrab, 2022. "Hydrogen production from biomass through integration of anaerobic digestion and biogas dry reforming," Applied Energy, Elsevier, vol. 309(C).
- Zhao, Ning & Wang, Jiangjiang & Tian, Yuyang & Yao, Zibo & Yan, Suying, 2024. "Numerical study on a novel solar-thermal-reaction system for clean hydrogen production of methanol-steam reforming," Renewable Energy, Elsevier, vol. 222(C).
- Ha, Chan & Zhou, Zhaozhou & Qin, Jiang & Wang, Cong & Liu, Zekuan & Leng, Shuang, 2024. "Structural optimization calculation of methanol spiral tube reformer based on waste heat utilization and experimental verification of reactor performance," Renewable Energy, Elsevier, vol. 226(C).
- Wang, Feng & Cao, Yiding & Wang, Guoqiang, 2015. "Thermoelectric generation coupling methanol steam reforming characteristic in microreactor," Energy, Elsevier, vol. 80(C), pages 642-653.
- Walluk, Mark R. & Lin, Jiefeng & Waller, Michael G. & Smith, Daniel F. & Trabold, Thomas A., 2014. "Diesel auto-thermal reforming for solid oxide fuel cell systems: Anode off-gas recycle simulation," Applied Energy, Elsevier, vol. 130(C), pages 94-102.
- Perng, Shiang-Wuu & Horng, Rong-Fang & Ku, Hui-Wen, 2013. "Effects of reaction chamber geometry on the performance and heat/mass transport phenomenon for a cylindrical methanol steam reformer," Applied Energy, Elsevier, vol. 103(C), pages 317-327.
- Hyemin Song & Younghyeon Kim & Dongjin Yu & Byoung Jae Kim & Hyunjin Ji & Sangseok Yu, 2020. "A Computational Analysis of a Methanol Steam Reformer Using Phase Change Heat Transfer," Energies, MDPI, vol. 13(17), pages 1-14, August.
- Yao, Ling & Wang, Feng & Wang, Long & Wang, Guoqiang, 2019. "Transport enhancement study on small-scale methanol steam reforming reactor with waste heat recovery for hydrogen production," Energy, Elsevier, vol. 175(C), pages 986-997.
- Perng, Shiang-Wuu & Horng, Rong-Fang & Wu, Horng-Wen, 2017. "Effect of a diffuser on performance enhancement of a cylindrical methanol steam reformer by computational fluid dynamic analysis," Applied Energy, Elsevier, vol. 206(C), pages 312-328.
- Braga, Lúcia Bollini & Silveira, Jose Luz & da Silva, Marcio Evaristo & Tuna, Celso Eduardo & Machin, Einara Blanco & Pedroso, Daniel Travieso, 2013. "Hydrogen production by biogas steam reforming: A technical, economic and ecological analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 166-173.
- Liu, Shuai & Du, Pengzhu & Jia, Hekun & Zhang, Qiushi & Hao, Liutao, 2024. "Study on the impact of methanol steam reforming reactor channel structure on hydrogen production performance," Renewable Energy, Elsevier, vol. 228(C).
- Chen, Wei-Hsin & Chen, Chia-Yang, 2020. "Water gas shift reaction for hydrogen production and carbon dioxide capture: A review," Applied Energy, Elsevier, vol. 258(C).
- Chein, Rei-Yu & Chen, Yen-Cho & Chang, Che-Ming & Chung, J.N., 2013. "Experimental study on the performance of hydrogen production from miniature methanol–steam reformer integrated with Swiss-roll type combustor for PEMFC," Applied Energy, Elsevier, vol. 105(C), pages 86-98.
- Wang, Yang & Wei, Lixia & Yao, Mingfa, 2016. "A theoretical investigation of the effects of the low-temperature reforming products on the combustion of n-heptane in an HCCI engine and a constant volume vessel," Applied Energy, Elsevier, vol. 181(C), pages 132-139.
- Baigmohammadi, Mohammadreza & Tabejamaat, Sadegh & Zarvandi, Jalal, 2015. "Numerical study of the behavior of methane-hydrogen/air pre-mixed flame in a micro reactor equipped with catalytic segmented bluff body," Energy, Elsevier, vol. 85(C), pages 117-144.
- Ha, Chan & Jiao, Yi & Wang, Cong & Qin, Jiang & Wang, Sibo & Liu, He & Liu, Zekuan & Guo, Fafu, 2023. "Experimental study of hydrogen catalytic combustion wall temperature distribution characteristics and its effect on the coupling performance of autothermal reformers," Energy, Elsevier, vol. 271(C).
- Cheng, Ze-Dong & Men, Jing-Jing & Liu, Shi-Cheng & He, Ya-Ling, 2019. "Three-dimensional numerical study on a novel parabolic trough solar receiver-reactor of a locally-installed Kenics static mixer for efficient hydrogen production," Applied Energy, Elsevier, vol. 250(C), pages 131-146.
- Cheng, Ze-Dong & Leng, Ya-Kun & Men, Jing-Jing & He, Ya-Ling, 2020. "Numerical study on a novel parabolic trough solar receiver-reactor and a new control strategy for continuous and efficient hydrogen production," Applied Energy, Elsevier, vol. 261(C).
- Mohammed Abbas, Akhtar Hasnain & Cheralathan, Kanakkampalayam Krishnan & Porpatham, Ekambaram & Arumugam, Senthil Kumar, 2024. "Hydrogen generation using methanol steam reforming – catalysts, reactors, and thermo-chemical recuperation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
- Li, Chunlin & Xu, Hengyong & Hou, Shoufu & Sun, Jian & Meng, Fanqiong & Ma, Junguo & Tsubaki, Noritatsu, 2013. "SiC foam monolith catalyst for pressurized adiabatic methane reforming," Applied Energy, Elsevier, vol. 107(C), pages 297-303.
- Cheng, Ze-Dong & Men, Jing-Jing & He, Ya-Ling & Tao, Yu-Bing & Ma, Zhao, 2019. "Comprehensive study on novel parabolic trough solar receiver-reactors of gradually-varied porosity catalyst beds for hydrogen production," Renewable Energy, Elsevier, vol. 143(C), pages 1766-1781.
- Kim, Taegyu & Jo, Sungkwon & Song, Young-Hoon & Lee, Dae Hoon, 2014. "Synergetic mechanism of methanol–steam reforming reaction in a catalytic reactor with electric discharges," Applied Energy, Elsevier, vol. 113(C), pages 1692-1699.
More about this item
Keywords
Hydrogen production; Methanol–steam reforming (MSR); Combustor gas hourly space velocity (GHSV-C); Reformer gas hourly space velocity (GHSV-R); Hydrogen yield;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:102:y:2013:i:c:p:1022-1034. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.