IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v216y2018icp243-261.html
   My bibliography  Save this article

Optimizing the porosity configuration of porous copper fiber sintered felt for methanol steam reforming micro-reactor based on flow distribution

Author

Listed:
  • Wang, Qing-Hui
  • Yang, Song
  • Zhou, Wei
  • Li, Jing-Rong
  • Xu, Zhi-Jia
  • Ke, Yu-Zhi
  • Yu, Wei
  • Hu, Guang-Hua

Abstract

Methanol steam reforming inside micro-reactors is considered as one of the effective approaches for on-board supplying hydrogen for fuel cells. Porous copper fiber sintered felts (PCFSFs) are a new kind of catalyst support for micro-reactors developed in recent years. However, there is a lack of approach to control their porosity configurations due to their random structure. A two-step optimization method was proposed to optimize the PCFSFs’ porosity configuration. Firstly, the topology structures of PCFSFs were optimized based on the best flow distributions obtained from macroscopic numerical analyses, and two kinds of PCFSFs with twelve porosity distributions were fabricated through the multi-step mold pressing and solid-phase sintering method. Secondly, the porosity distributions of the semi-optimized PCFSFs were optimized by investigating their reaction characteristics under different gas hourly space velocities (GHSVs) and reaction temperatures. The results indicated that PCFSFs with porosity distribution along the Left-Right direction (PCFSF-LRs) exhibited better reaction performance than PCFSFs with porosity distribution along the Upside-Underside direction (PCFSF-UUs). The methanol conversion and H2 flow rate for the PCFSF-LRs with porosity distribution of 0.7–0.9–0.8 and 0.8–0.9–0.7 kept on a high level (above 92% and 0.59 mol/h, respectively), regardless of the change of GHSVs and reaction temperatures in most cases. The H2 selectivity of the PCFSF-LR of 0.7–0.9–0.8 was the highest under large GHSVs and all tested reaction temperatures. The demonstrated effect of counteracting, even reversing the conventional influence of the GHSV and temperature on the performance of methanol steam reforming may be attributed to the more uniform flow distribution in the two PCFSF-LRs.

Suggested Citation

  • Wang, Qing-Hui & Yang, Song & Zhou, Wei & Li, Jing-Rong & Xu, Zhi-Jia & Ke, Yu-Zhi & Yu, Wei & Hu, Guang-Hua, 2018. "Optimizing the porosity configuration of porous copper fiber sintered felt for methanol steam reforming micro-reactor based on flow distribution," Applied Energy, Elsevier, vol. 216(C), pages 243-261.
  • Handle: RePEc:eee:appene:v:216:y:2018:i:c:p:243-261
    DOI: 10.1016/j.apenergy.2018.02.102
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918302277
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.02.102?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ribeirinha, P. & Abdollahzadeh, M. & Boaventura, M. & Mendes, A., 2017. "H2 production with low carbon content via MSR in packed bed membrane reactors for high-temperature polymeric electrolyte membrane fuel cell," Applied Energy, Elsevier, vol. 188(C), pages 409-419.
    2. Baricci, Andrea & Mereu, Riccardo & Messaggi, Mirko & Zago, Matteo & Inzoli, Fabio & Casalegno, Andrea, 2017. "Application of computational fluid dynamics to the analysis of geometrical features in PEM fuel cells flow fields with the aid of impedance spectroscopy," Applied Energy, Elsevier, vol. 205(C), pages 670-682.
    3. Dou, Binlin & Song, Yongchen & Wang, Chao & Chen, Haisheng & Xu, Yujie, 2014. "Hydrogen production from catalytic steam reforming of biodiesel byproduct glycerol: Issues and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 950-960.
    4. Chun, Jeong Hwan & Jo, Dong Hyun & Kim, Sang Gon & Park, Sun Hee & Lee, Chang Hoon & Lee, Eun Sook & Jyoung, Jy-Young & Kim, Sung Hyun, 2013. "Development of a porosity-graded micro porous layer using thermal expandable graphite for proton exchange membrane fuel cells," Renewable Energy, Elsevier, vol. 58(C), pages 28-33.
    5. Huang, Yu-Xian & Cheng, Chin-Hsiang & Wang, Xiao-Dong & Jang, Jiin-Yuh, 2010. "Effects of porosity gradient in gas diffusion layers on performance of proton exchange membrane fuel cells," Energy, Elsevier, vol. 35(12), pages 4786-4794.
    6. Park, Jaeman & Oh, Hwanyeong & Lee, Yoo Il & Min, Kyoungdoug & Lee, Eunsook & Jyoung, Jy-Young, 2016. "Effect of the pore size variation in the substrate of the gas diffusion layer on water management and fuel cell performance," Applied Energy, Elsevier, vol. 171(C), pages 200-212.
    7. Chein, Rei-Yu & Chen, Yen-Cho & Chang, Che-Ming & Chung, J.N., 2013. "Experimental study on the performance of hydrogen production from miniature methanol–steam reformer integrated with Swiss-roll type combustor for PEMFC," Applied Energy, Elsevier, vol. 105(C), pages 86-98.
    8. Sharaf, Omar Z. & Orhan, Mehmet F., 2014. "An overview of fuel cell technology: Fundamentals and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 810-853.
    9. Zeng, Dehuai & Pan, Minqiang & Wang, Liming & Tang, Yong, 2012. "Fabrication and characteristics of cube-post microreactors for methanol steam reforming," Applied Energy, Elsevier, vol. 91(1), pages 208-213.
    10. Elmer, Theo & Worall, Mark & Wu, Shenyi & Riffat, Saffa B., 2015. "Fuel cell technology for domestic built environment applications: State of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 913-931.
    11. Pan, Minqiang & Wu, Qiuyu & Jiang, Lianbo & Zeng, Dehuai, 2015. "Effect of microchannel structure on the reaction performance of methanol steam reforming," Applied Energy, Elsevier, vol. 154(C), pages 416-427.
    12. Oh, Hwanyeong & Park, Jaeman & Min, Kyoungdoug & Lee, Eunsook & Jyoung, Jy-Young, 2015. "Effects of pore size gradient in the substrate of a gas diffusion layer on the performance of a proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 149(C), pages 186-193.
    13. Yuan, Wei & Tang, Yong & Yang, Xiaojun & Wan, Zhenping, 2012. "Porous metal materials for polymer electrolyte membrane fuel cells – A review," Applied Energy, Elsevier, vol. 94(C), pages 309-329.
    14. Djilali, N., 2007. "Computational modelling of polymer electrolyte membrane (PEM) fuel cells: Challenges and opportunities," Energy, Elsevier, vol. 32(4), pages 269-280.
    15. Wang, Yun & Chen, Ken S. & Mishler, Jeffrey & Cho, Sung Chan & Adroher, Xavier Cordobes, 2011. "A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research," Applied Energy, Elsevier, vol. 88(4), pages 981-1007, April.
    16. Hsueh, Ching-Yi & Chu, Hsin-Sen & Yan, Wei-Mon & Chen, Chiun-Hsun, 2010. "Transport phenomena and performance of a plate methanol steam micro-reformer with serpentine flow field design," Applied Energy, Elsevier, vol. 87(10), pages 3137-3147, October.
    17. Wang, Guoqiang & Wang, Feng & Li, Longjian & Zhang, Guofu, 2013. "Experiment of catalyst activity distribution effect on methanol steam reforming performance in the packed bed plate-type reactor," Energy, Elsevier, vol. 51(C), pages 267-272.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yan, Peijian & Tian, Pengfei & Cai, Cheng & Zhou, Shenghu & Yu, Xinhai & Zhao, Shuangliang & Tu, Shan-Tung & Deng, Chengwei & Sun, Yi, 2020. "Antioxidative and stable PdZn/ZnO/Al2O3 catalyst coatings concerning methanol steam reforming for fuel cell-powered vehicles," Applied Energy, Elsevier, vol. 268(C).
    2. Liu, Yangxu & Zhou, Wei & Lin, Yu & Chen, Lu & Chu, Xuyang & Zheng, Tianqing & Wan, Shaolong & Lin, Jingdong, 2019. "Novel copper foam with ordered hole arrays as catalyst support for methanol steam reforming microreactor," Applied Energy, Elsevier, vol. 246(C), pages 24-37.
    3. Cheng, Ze-Dong & Men, Jing-Jing & He, Ya-Ling & Tao, Yu-Bing & Ma, Zhao, 2019. "Comprehensive study on novel parabolic trough solar receiver-reactors of gradually-varied porosity catalyst beds for hydrogen production," Renewable Energy, Elsevier, vol. 143(C), pages 1766-1781.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Yangxu & Zhou, Wei & Lin, Yu & Chen, Lu & Chu, Xuyang & Zheng, Tianqing & Wan, Shaolong & Lin, Jingdong, 2019. "Novel copper foam with ordered hole arrays as catalyst support for methanol steam reforming microreactor," Applied Energy, Elsevier, vol. 246(C), pages 24-37.
    2. Zhang, Xiaoqing & Yang, Jiapei & Ma, Xiao & Zhuge, Weilin & Shuai, Shijin, 2022. "Modelling and analysis on effects of penetration of microporous layer into gas diffusion layer in PEM fuel cells: Focusing on mass transport," Energy, Elsevier, vol. 254(PA).
    3. Perng, Shiang-Wuu & Wu, Horng-Wen, 2022. "Influence of inlet-nozzle and outlet-diffuser mounted in the plate-shape reactor on PEMFC net power output and methanol steam reforming performance," Applied Energy, Elsevier, vol. 323(C).
    4. Cheng, Chin-Hsiang & Huang, Yu-Xian & King, Shun-Chih & Lee, Chun-I & Leu, Chih-Hsing, 2014. "CFD (computational fluid dynamics)-based optimal design of a micro-reformer by integrating computational a fluid dynamics code using a simplified conjugate-gradient method," Energy, Elsevier, vol. 70(C), pages 355-365.
    5. Wang, Junye, 2015. "Theory and practice of flow field designs for fuel cell scaling-up: A critical review," Applied Energy, Elsevier, vol. 157(C), pages 640-663.
    6. Bao, Zhiming & Niu, Zhiqiang & Jiao, Kui, 2020. "Gas distribution and droplet removal of metal foam flow field for proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 280(C).
    7. Wang, Yancheng & Liu, Haiyu & Mei, Deqing & Yu, Shizheng, 2022. "Direct ink writing of 3D SiC scaffold as catalyst support for thermally autonomous methanol steam reforming microreactor," Renewable Energy, Elsevier, vol. 187(C), pages 923-932.
    8. Kong, Im Mo & Jung, Aeri & Kim, Young Sang & Kim, Min Soo, 2017. "Numerical investigation on double gas diffusion backing layer functionalized on water removal in a proton exchange membrane fuel cell," Energy, Elsevier, vol. 120(C), pages 478-487.
    9. Xing, Lei & Shi, Weidong & Su, Huaneng & Xu, Qian & Das, Prodip K. & Mao, Baodong & Scott, Keith, 2019. "Membrane electrode assemblies for PEM fuel cells: A review of functional graded design and optimization," Energy, Elsevier, vol. 177(C), pages 445-464.
    10. Kim, Taegyu & Jo, Sungkwon & Song, Young-Hoon & Lee, Dae Hoon, 2014. "Synergetic mechanism of methanol–steam reforming reaction in a catalytic reactor with electric discharges," Applied Energy, Elsevier, vol. 113(C), pages 1692-1699.
    11. Kong, Im Mo & Jung, Aeri & Kim, Min Soo, 2016. "Investigations on the double gas diffusion backing layer for performance improvement of self-humidified proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 176(C), pages 149-156.
    12. Lo, An-Ya & Hung, Chin-Te & Yu, Ningya & Kuo, Cheng-Tzu & Liu, Shang-Bin, 2012. "Syntheses of carbon porous materials with varied pore sizes and their performances as catalyst supports during methanol oxidation reaction," Applied Energy, Elsevier, vol. 100(C), pages 66-74.
    13. Das, Himadry Shekhar & Tan, Chee Wei & Yatim, A.H.M., 2017. "Fuel cell hybrid electric vehicles: A review on power conditioning units and topologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 268-291.
    14. Peng, Fei & Zhao, Yuanzhe & Li, Xiaopeng & Liu, Zhixiang & Chen, Weirong & Liu, Yang & Zhou, Donghua, 2017. "Development of master-slave energy management strategy based on fuzzy logic hysteresis state machine and differential power processing compensation for a PEMFC-LIB-SC hybrid tramway," Applied Energy, Elsevier, vol. 206(C), pages 346-363.
    15. Liao, Shuxin & Qiu, Diankai & Yi, Peiyun & Peng, Linfa & Lai, Xinmin, 2022. "Modeling of a novel cathode flow field design with optimized sub-channels to improve drainage for proton exchange membrane fuel cells," Energy, Elsevier, vol. 261(PB).
    16. Bae, Suk Joo & Kim, Seong-Joon & Lee, Jin-Hwa & Song, Inseob & Kim, Nam-In & Seo, Yongho & Kim, Ki Buem & Lee, Naesung & Park, Jun-Young, 2014. "Degradation pattern prediction of a polymer electrolyte membrane fuel cell stack with series reliability structure via durability data of single cells," Applied Energy, Elsevier, vol. 131(C), pages 48-55.
    17. Abdollahzadeh, M. & Ribeirinha, P. & Boaventura, M. & Mendes, A., 2018. "Three-dimensional modeling of PEMFC with contaminated anode fuel," Energy, Elsevier, vol. 152(C), pages 939-959.
    18. Lin, Jui-Yen & Shih, Yu-Jen & Chen, Po-Yen & Huang, Yao-Hui, 2016. "Precipitation recovery of boron from aqueous solution by chemical oxo-precipitation at room temperature," Applied Energy, Elsevier, vol. 164(C), pages 1052-1058.
    19. Kim, Sung Han & Miesse, Craig M. & Lee, Hee Bum & Chang, Ik Whang & Hwang, Yong Sheen & Jang, Jae Hyuk & Cha, Suk Won, 2014. "Ultra compact direct hydrogen fuel cell prototype using a metal hydride hydrogen storage tank for a mobile phone," Applied Energy, Elsevier, vol. 134(C), pages 382-391.
    20. Zhao, Jian & Shahgaldi, Samaneh & Alaefour, Ibrahim & Xu, Qian & Li, Xianguo, 2018. "Gas permeability of catalyzed electrodes in polymer electrolyte membrane fuel cells," Applied Energy, Elsevier, vol. 209(C), pages 203-210.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:216:y:2018:i:c:p:243-261. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.