Hydrogen production from ethanol decomposition by pulsed discharge with needle-net configurations
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2017.08.055
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Taghvaei, Hamed & Shirazi, Meisam Mohamadzadeh & Hooshmand, Navid & Rahimpour, Mohammad Reza & Jahanmiri, Abdolhossien, 2012. "Experimental investigation of hydrogen production through heavy naphtha cracking in pulsed DBD reactor," Applied Energy, Elsevier, vol. 98(C), pages 3-10.
- Xin, Yanbin & Sun, Bing & Zhu, Xiaomei & Yan, Zhiyu & Liu, Hui & Liu, Yongjun, 2016. "Effects of plate electrode materials on hydrogen production by pulsed discharge in ethanol solution," Applied Energy, Elsevier, vol. 181(C), pages 75-82.
- Lili Lin & Wu Zhou & Rui Gao & Siyu Yao & Xiao Zhang & Wenqian Xu & Shijian Zheng & Zheng Jiang & Qiaolin Yu & Yong-Wang Li & Chuan Shi & Xiao-Dong Wen & Ding Ma, 2017. "Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts," Nature, Nature, vol. 544(7648), pages 80-83, April.
- Kim, Taegyu & Jo, Sungkwon & Song, Young-Hoon & Lee, Dae Hoon, 2014. "Synergetic mechanism of methanol–steam reforming reaction in a catalytic reactor with electric discharges," Applied Energy, Elsevier, vol. 113(C), pages 1692-1699.
- Linga Reddy, E. & Biju, V.M. & Subrahmanyam, Ch., 2012. "Production of hydrogen and sulfur from hydrogen sulfide assisted by nonthermal plasma," Applied Energy, Elsevier, vol. 95(C), pages 87-92.
- Živković, Luka A. & Pohar, Andrej & Likozar, Blaž & Nikačević, Nikola M., 2016. "Kinetics and reactor modeling for CaO sorption-enhanced high-temperature water–gas shift (SE–WGS) reaction for hydrogen production," Applied Energy, Elsevier, vol. 178(C), pages 844-855.
- Zhao, Kun & He, Fang & Huang, Zhen & Wei, Guoqiang & Zheng, Anqing & Li, Haibin & Zhao, Zengli, 2016. "Perovskite-type oxides LaFe1−xCoxO3 for chemical looping steam methane reforming to syngas and hydrogen co-production," Applied Energy, Elsevier, vol. 168(C), pages 193-203.
- Hafizi, A. & Rahimpour, M.R. & Hassanajili, Sh., 2016. "Hydrogen production via chemical looping steam methane reforming process: Effect of cerium and calcium promoters on the performance of Fe2O3/Al2O3 oxygen carrier," Applied Energy, Elsevier, vol. 165(C), pages 685-694.
- Singha, Rajib Kumar & Shukla, Astha & Yadav, Aditya & Adak, Shubhadeep & Iqbal, Zafar & Siddiqui, Nazia & Bal, Rajaram, 2016. "Energy efficient methane tri-reforming for synthesis gas production over highly coke resistant nanocrystalline Ni–ZrO2 catalyst," Applied Energy, Elsevier, vol. 178(C), pages 110-125.
- Xin, Yanbin & Sun, Bing & Zhu, Xiaomei & Yan, Zhiyu & Liu, Yongjun & Liu, Hui, 2016. "Characteristics of hydrogen produced by pulsed discharge in ethanol solution," Applied Energy, Elsevier, vol. 168(C), pages 122-129.
- Du, ChangMing & Mo, JianMin & Tang, Jun & Huang, DongWei & Mo, ZhiXing & Wang, QingKun & Ma, ShiZhe & Chen, ZhongJie, 2014. "Plasma reforming of bio-ethanol for hydrogen rich gas production," Applied Energy, Elsevier, vol. 133(C), pages 70-79.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wang, Qiuying & Zhu, Xiaomei & Sun, Bing & Li, Zhi & Liu, Jinglin, 2022. "Hydrogen production from methane via liquid phase microwave plasma: A deoxidation strategy," Applied Energy, Elsevier, vol. 328(C).
- Xin, Yanbin & Sun, Bing & Liu, Jingyu & Wang, Quanli & Zhu, Xiaomei & Yan, Zhiyu, 2021. "Effects of electrode configurations, solution pH, TiO2 addition on hydrogen production by in-liquid discharge plasma," Renewable Energy, Elsevier, vol. 171(C), pages 728-734.
- Bogdan Ulejczyk & Łukasz Nogal & Michał Młotek & Krzysztof Krawczyk, 2022. "Efficient Plasma Technology for the Production of Green Hydrogen from Ethanol and Water," Energies, MDPI, vol. 15(8), pages 1-14, April.
- Rincón, R. & Muñoz, J. & Morales-Calero, F.J. & Orejas, J. & Calzada, M.D., 2021. "Assessment of two atmospheric-pressure microwave plasma sources for H2 production from ethanol decomposition," Applied Energy, Elsevier, vol. 294(C).
- Wang, Xiaoling & Gao, Yuan & Zhang, Shuai & Sun, Hao & Li, Jie & Shao, Tao, 2019. "Nanosecond pulsed plasma assisted dry reforming of CH4: The effect of plasma operating parameters," Applied Energy, Elsevier, vol. 243(C), pages 132-144.
- Gao, Yuan & Zhang, Shuai & Sun, Hao & Wang, Ruixue & Tu, Xin & Shao, Tao, 2018. "Highly efficient conversion of methane using microsecond and nanosecond pulsed spark discharges," Applied Energy, Elsevier, vol. 226(C), pages 534-545.
- Wu, Tianyi & Wang, Junfeng & Zhang, Wei & Zuo, Lei & Xu, Haojie & Li, Bin, 2023. "Plasma bubble characteristics and hydrogen production performance of methanol decomposition by liquid phase discharge," Energy, Elsevier, vol. 273(C).
- Xin, Yanbin & Sun, Bing & Zhu, Xiaomei & Yan, Zhiyu & Sun, Xiaohang, 2021. "Hydrogen-rich syngas production by liquid phase pulsed electrodeless discharge," Energy, Elsevier, vol. 214(C).
- Xin, Yanbin & Wang, Quanli & Sun, Jiabao & Sun, Bing, 2022. "Plasma in aqueous methanol: Influence of plasma initiation mechanism on hydrogen production," Applied Energy, Elsevier, vol. 325(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Gao, Yuan & Zhang, Shuai & Sun, Hao & Wang, Ruixue & Tu, Xin & Shao, Tao, 2018. "Highly efficient conversion of methane using microsecond and nanosecond pulsed spark discharges," Applied Energy, Elsevier, vol. 226(C), pages 534-545.
- Wu, Angjian & Li, Xiaodong & Yan, Jianhua & Yang, Jian & Du, Changming & Zhu, Fengsen & Qian, Jinyuan, 2017. "Co-generation of hydrogen and carbon aerosol from coalbed methane surrogate using rotating gliding arc plasma," Applied Energy, Elsevier, vol. 195(C), pages 67-79.
- Khalifeh, Omid & Mosallanejad, Amin & Taghvaei, Hamed & Rahimpour, Mohammad Reza & Shariati, Alireza, 2016. "Decomposition of methane to hydrogen using nanosecond pulsed plasma reactor with different active volumes, voltages and frequencies," Applied Energy, Elsevier, vol. 169(C), pages 585-596.
- Xin, Yanbin & Sun, Bing & Liu, Jingyu & Wang, Quanli & Zhu, Xiaomei & Yan, Zhiyu, 2021. "Effects of electrode configurations, solution pH, TiO2 addition on hydrogen production by in-liquid discharge plasma," Renewable Energy, Elsevier, vol. 171(C), pages 728-734.
- Xin, Yanbin & Wang, Quanli & Sun, Jiabao & Sun, Bing, 2022. "Plasma in aqueous methanol: Influence of plasma initiation mechanism on hydrogen production," Applied Energy, Elsevier, vol. 325(C).
- Xin, Yanbin & Sun, Bing & Zhu, Xiaomei & Yan, Zhiyu & Liu, Yongjun & Liu, Hui, 2016. "Characteristics of hydrogen produced by pulsed discharge in ethanol solution," Applied Energy, Elsevier, vol. 168(C), pages 122-129.
- Xin, Yanbin & Sun, Bing & Zhu, Xiaomei & Yan, Zhiyu & Liu, Hui & Liu, Yongjun, 2016. "Effects of plate electrode materials on hydrogen production by pulsed discharge in ethanol solution," Applied Energy, Elsevier, vol. 181(C), pages 75-82.
- Akbari-Emadabadi, S. & Rahimpour, M.R. & Hafizi, A. & Keshavarz, P., 2017. "Production of hydrogen-rich syngas using Zr modified Ca-Co bifunctional catalyst-sorbent in chemical looping steam methane reforming," Applied Energy, Elsevier, vol. 206(C), pages 51-62.
- Zhao, Xiaotong & Sun, Bing & Zhu, Tonghui & Zhu, Xiaomei & Yan, Zhiyu & Xin, Yanbin & Sun, Xiaohang, 2020. "Pathways of hydrogen-rich gas produced by microwave discharge in ethanol-water mixtures," Renewable Energy, Elsevier, vol. 156(C), pages 768-776.
- Lu, Chunqiang & Li, Kongzhai & Wang, Hua & Zhu, Xing & Wei, Yonggang & Zheng, Min & Zeng, Chunhua, 2018. "Chemical looping reforming of methane using magnetite as oxygen carrier: Structure evolution and reduction kinetics," Applied Energy, Elsevier, vol. 211(C), pages 1-14.
- Sanusi, Yinka S. & Mokheimer, Esmail M.A. & Habib, Mohamed A., 2017. "Thermo-economic analysis of integrated membrane-SMR ITM-oxy-combustion hydrogen and power production plant," Applied Energy, Elsevier, vol. 204(C), pages 626-640.
- Zhang, Haotian & Sun, Zhuxing & Hu, Yun Hang, 2021. "Steam reforming of methane: Current states of catalyst design and process upgrading," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
- Gil, María V. & Rout, Kumar R. & Chen, De, 2018. "Production of high pressure pure H2 by pressure swing sorption enhanced steam reforming (PS-SESR) of byproducts in biorefinery," Applied Energy, Elsevier, vol. 222(C), pages 595-607.
- Luo, Ming & Yi, Yang & Wang, Shuzhong & Wang, Zhuliang & Du, Min & Pan, Jianfeng & Wang, Qian, 2018. "Review of hydrogen production using chemical-looping technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3186-3214.
- Wu, Tianyi & Wang, Junfeng & Zhang, Wei & Zuo, Lei & Xu, Haojie & Li, Bin, 2023. "Plasma bubble characteristics and hydrogen production performance of methanol decomposition by liquid phase discharge," Energy, Elsevier, vol. 273(C).
- Kim, Taegyu & Jo, Sungkwon & Song, Young-Hoon & Lee, Dae Hoon, 2014. "Synergetic mechanism of methanol–steam reforming reaction in a catalytic reactor with electric discharges," Applied Energy, Elsevier, vol. 113(C), pages 1692-1699.
- Lin, Bingxuan & Wu, Yun & Zhu, Yifei & Song, Feilong & Bian, Dongliang, 2019. "Experimental investigation of gliding arc plasma fuel injector for ignition and extinction performance improvement," Applied Energy, Elsevier, vol. 235(C), pages 1017-1026.
- Jin, Jian & Wei, Xin & Liu, Mingkai & Yu, Yuhang & Li, Wenjia & Kong, Hui & Hao, Yong, 2018. "A solar methane reforming reactor design with enhanced efficiency," Applied Energy, Elsevier, vol. 226(C), pages 797-807.
- Xin, Yanbin & Sun, Bing & Zhu, Xiaomei & Yan, Zhiyu & Sun, Xiaohang, 2021. "Hydrogen-rich syngas production by liquid phase pulsed electrodeless discharge," Energy, Elsevier, vol. 214(C).
- Qiu, Yu & Zhang, Shuai & Cui, Dongxu & Li, Min & Zeng, Jimin & Zeng, Dewang & Xiao, Rui, 2019. "Enhanced hydrogen production performance at intermediate temperatures through the synergistic effects of binary oxygen carriers," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
More about this item
Keywords
Hydrogen production; Needle-net configurations; Pulsed discharge; Ethanol solution; Nano carbon particles;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:206:y:2017:i:c:p:126-133. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.