My bibliography
Save this item
The Big Data Newsvendor: Practical Insights from Machine Learning
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jos'e-Manuel Pe~na & Fernando Su'arez & Omar Larr'e & Domingo Ram'irez & Arturo Cifuentes, 2023. "A Modified CTGAN-Plus-Features Based Method for Optimal Asset Allocation," Papers 2302.02269, arXiv.org, revised May 2024.
- Jinzhi Bu & David Simchi-Levi & Li Wang, 2023. "Offline Pricing and Demand Learning with Censored Data," Management Science, INFORMS, vol. 69(2), pages 885-903, February.
- Jung, Seung Hwan & Yang, Yunsi, 2023. "On the value of operational flexibility in the trailer shipment and assignment problem: Data-driven approaches and reinforcement learning," International Journal of Production Economics, Elsevier, vol. 264(C).
- Zhen-Yu Chen & Zhi-Ping Fan & Minghe Sun, 2023. "Machine Learning Methods for Data-Driven Demand Estimation and Assortment Planning Considering Cross-Selling and Substitutions," INFORMS Journal on Computing, INFORMS, vol. 35(1), pages 158-177, January.
- Tian, Yu-Xin & Zhang, Chuan, 2023. "An end-to-end deep learning model for solving data-driven newsvendor problem with accessibility to textual review data," International Journal of Production Economics, Elsevier, vol. 265(C).
- Berndt Jesenko & Christian Schlögl, 2021. "The effect of web of science subject categories on clustering: the case of data-driven methods in business and economic sciences," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(8), pages 6785-6801, August.
- Yang, Cheng-Hu & Wang, Hai-Tang & Ma, Xin & Talluri, Srinivas, 2023. "A data-driven newsvendor problem: A high-dimensional and mixed-frequency method," International Journal of Production Economics, Elsevier, vol. 266(C).
- Muñoz, M.A. & Pineda, S. & Morales, J.M., 2022. "A bilevel framework for decision-making under uncertainty with contextual information," Omega, Elsevier, vol. 108(C).
- Hamsa Bastani & Mohsen Bayati, 2020. "Online Decision Making with High-Dimensional Covariates," Operations Research, INFORMS, vol. 68(1), pages 276-294, January.
- Susan Athey & Stefan Wager, 2021.
"Policy Learning With Observational Data,"
Econometrica, Econometric Society, vol. 89(1), pages 133-161, January.
- Susan Athey & Stefan Wager, 2017. "Policy Learning with Observational Data," Papers 1702.02896, arXiv.org, revised Sep 2020.
- Felix Wick & Ulrich Kerzel & Martin Hahn & Moritz Wolf & Trapti Singhal & Daniel Stemmer & Jakob Ernst & Michael Feindt, 2021. "Demand Forecasting of Individual Probability Density Functions with Machine Learning," SN Operations Research Forum, Springer, vol. 2(3), pages 1-39, September.
- Francis de Véricourt & Georgia Perakis, 2020. "Frontiers in Service Science: The Management of Data Analytics Services: New Challenges and Future Directions," Service Science, INFORMS, vol. 12(4), pages 121-129, December.
- Tsan‐Ming Choi & Subodha Kumar & Xiaohang Yue & Hau‐Ling Chan, 2022. "Disruptive Technologies and Operations Management in the Industry 4.0 Era and Beyond," Production and Operations Management, Production and Operations Management Society, vol. 31(1), pages 9-31, January.
- Yichun Hu & Nathan Kallus & Xiaojie Mao, 2022. "Fast Rates for Contextual Linear Optimization," Management Science, INFORMS, vol. 68(6), pages 4236-4245, June.
- Qi Feng & J. George Shanthikumar, 2022. "Developing operations management data analytics," Production and Operations Management, Production and Operations Management Society, vol. 31(12), pages 4544-4557, December.
- Rui Wang & Xiao Yan & Chuanjin Zhu, 2023. "Solving a Distribution-Free Multi-Period Newsvendor Problem With Advance Purchase Discount via an Online Ordering Solution," SAGE Open, , vol. 13(2), pages 21582440231, June.
- van der Haar, Joost F. & Wellens, Arnoud P. & Boute, Robert N. & Basten, Rob J.I., 2024. "Supervised learning for integrated forecasting and inventory control," European Journal of Operational Research, Elsevier, vol. 319(2), pages 573-586.
- Bernardo K. Pagnoncelli & Domingo Ramírez & Hamed Rahimian & Arturo Cifuentes, 2023. "A Synthetic Data-Plus-Features Driven Approach for Portfolio Optimization," Computational Economics, Springer;Society for Computational Economics, vol. 62(1), pages 187-204, June.
- Bai, Qingguo & Xu, Jianteng & Gong, Yeming & Chauhan, Satyaveer S., 2022. "Robust decisions for regulated sustainable manufacturing with partial demand information: Mandatory emission capacity versus emission tax," European Journal of Operational Research, Elsevier, vol. 298(3), pages 874-893.
- Gao, Yuqiang & Wang, Zishuai & Wang, Kaihua & Zhang, Ruiai & Lu, Yuchen, 2023. "Effect of big data on enterprise financialization: Evidence from China's SMEs," Technology in Society, Elsevier, vol. 75(C).
- Tian, Xuecheng & Wang, Shuaian & Laporte, Gilbert & Yang, Ying, 2024. "Determinism versus uncertainty: Examining the worst-case expected performance of data-driven policies," European Journal of Operational Research, Elsevier, vol. 318(1), pages 242-252.
- Thais de Castro Moraes & Jiancheng Qin & Xue-Ming Yuan & Ek Peng Chew, 2023. "Evolving Hybrid Deep Neural Network Models for End-to-End Inventory Ordering Decisions," Logistics, MDPI, vol. 7(4), pages 1-18, November.
- Yi Wang & Yafei Yang & Zhaoxiang Qin & Yefei Yang & Jun Li, 2023. "A Literature Review on the Application of Digital Technology in Achieving Green Supply Chain Management," Sustainability, MDPI, vol. 15(11), pages 1-18, May.
- Corredera, Alberto, 2022. "Prescriptive selection of machine learning hyperparameters with applications in power markets: retailer's optimal trading," DES - Working Papers. Statistics and Econometrics. WS 33693, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Mintz, Yonatan & Aswani, Anil & Kaminsky, Philip & Flowers, Elena & Fukuoka, Yoshimi, 2023. "Behavioral analytics for myopic agents," European Journal of Operational Research, Elsevier, vol. 310(2), pages 793-811.
- Gen Sakoda & Hideki Takayasu & Misako Takayasu, 2019. "Data Science Solutions for Retail Strategy to Reduce Waste Keeping High Profit," Sustainability, MDPI, vol. 11(13), pages 1-30, June.
- Corredera, Alberto & Ruiz, Carlos, 2023. "Prescriptive selection of machine learning hyperparameters with applications in power markets: Retailer’s optimal trading," European Journal of Operational Research, Elsevier, vol. 306(1), pages 370-388.
- Shuaian Wang & Xuecheng Tian, 2023. "A Deficiency of the Predict-Then-Optimize Framework: Decreased Decision Quality with Increased Data Size," Mathematics, MDPI, vol. 11(15), pages 1-9, July.
- Sheng Liu & Long He & Zuo-Jun Max Shen, 2021. "On-Time Last-Mile Delivery: Order Assignment with Travel-Time Predictors," Management Science, INFORMS, vol. 67(7), pages 4095-4119, July.
- Viet Anh Nguyen & Fan Zhang & Shanshan Wang & Jose Blanchet & Erick Delage & Yinyu Ye, 2021. "Robustifying Conditional Portfolio Decisions via Optimal Transport," Papers 2103.16451, arXiv.org, revised Apr 2024.
- Shanshan Wang & Erick Delage, 2024. "A Column Generation Scheme for Distributionally Robust Multi-Item Newsvendor Problems," INFORMS Journal on Computing, INFORMS, vol. 36(3), pages 849-867, May.
- Ari Hyytinen & Petri Rouvinen & Mika Pajarinen & Joosua Virtanen, 2023. "Ex Ante Predictability of Rapid Growth: A Design Science Approach," Entrepreneurship Theory and Practice, , vol. 47(6), pages 2465-2493, November.
- Meng Qi & Ying Cao & Zuo-Jun (Max) Shen, 2022. "Distributionally Robust Conditional Quantile Prediction with Fixed Design," Management Science, INFORMS, vol. 68(3), pages 1639-1658, March.
- Yi‐Jen (Ian) Ho & Siyuan Liu & Jingchuan Pu & Dian Zhang, 2022. "Is it all about you or your driving? Designing IoT‐enabled risk assessments," Production and Operations Management, Production and Operations Management Society, vol. 31(11), pages 4205-4222, November.
- Xi Chen & Zachary Owen & Clark Pixton & David Simchi-Levi, 2022. "A Statistical Learning Approach to Personalization in Revenue Management," Management Science, INFORMS, vol. 68(3), pages 1923-1937, March.
- Justin Jia & Elena Katok, 2022. "Technical note: Sufficient operational statistics," Production and Operations Management, Production and Operations Management Society, vol. 31(6), pages 2429-2437, June.
- Tinglong Dai & Jing-Sheng Song, 2021. "Transforming COVID-19 vaccines into vaccination," Health Care Management Science, Springer, vol. 24(3), pages 455-459, September.
- Miguel Angel Muñoz & Pierre Pinson & Jalal Kazempour, 2023. "Online decision making for trading wind energy," Computational Management Science, Springer, vol. 20(1), pages 1-31, December.
- Rettinger, Moritz & Mandl, Christian & Minner, Stefan, 2024. "A data-driven approach for optimal operational and financial commodity hedging," European Journal of Operational Research, Elsevier, vol. 316(1), pages 341-360.
- Satya S. Malladi & Alan L. Erera & Chelsea C. White, 2023. "Inventory control with modulated demand and a partially observed modulation process," Annals of Operations Research, Springer, vol. 321(1), pages 343-369, February.
- Olivares-Nadal, Alba V., 2024. "Constructing decision rules for multiproduct newsvendors: An integrated estimation-and-optimization framework," European Journal of Operational Research, Elsevier, vol. 315(3), pages 1021-1037.
- Nam Ho-Nguyen & Fatma Kılınç-Karzan, 2022. "Risk Guarantees for End-to-End Prediction and Optimization Processes," Management Science, INFORMS, vol. 68(12), pages 8680-8698, December.
- Andrew Butler & Roy H. Kwon, 2021. "Integrating prediction in mean-variance portfolio optimization," Papers 2102.09287, arXiv.org, revised Nov 2022.
- Liu, Congzheng & Letchford, Adam N. & Svetunkov, Ivan, 2022. "Newsvendor problems: An integrated method for estimation and optimisation," European Journal of Operational Research, Elsevier, vol. 300(2), pages 590-601.
- Gah-Yi Ban, 2020. "Confidence Intervals for Data-Driven Inventory Policies with Demand Censoring," Operations Research, INFORMS, vol. 68(2), pages 309-326, March.
- João M. C. Sousa & Rodrigo Luís & Rui Mirra Santos & Luís Mendonça & Susana M. Vieira, 2024. "Fuzzy Multi-Item Newsvendor Problem: An Application to Inventory Management," Mathematics, MDPI, vol. 12(11), pages 1-17, May.
- Hongzhe Zhang & Xiaohang Zhao & Xiao Fang & Bintong Chen, 2024. "Proactive Resource Request for Disaster Response: A Deep Learning-Based Optimization Model," Information Systems Research, INFORMS, vol. 35(2), pages 528-550, June.
- Adam N. Elmachtoub & Paul Grigas, 2022. "Smart “Predict, then Optimize”," Management Science, INFORMS, vol. 68(1), pages 9-26, January.
- Velibor V. Miv{s}i'c & Georgia Perakis, 2019. "Data Analytics in Operations Management: A Review," Papers 1905.00556, arXiv.org.
- Schäfers, A. & Bougioukos, V. & Karamatzanis, G. & Nikolopoulos, K., 2024. "Prediction-led prescription: Optimal Decision-Making in times of turbulence and business performance improvement," Journal of Business Research, Elsevier, vol. 182(C).
- van Eekelen, Wouter, 2023. "Distributionally robust views on queues and related stochastic models," Other publications TiSEM 9b99fc05-9d68-48eb-ae8c-9, Tilburg University, School of Economics and Management.
- Andrew F. Siegel & Michael R. Wagner, 2021. "Profit Estimation Error in the Newsvendor Model Under a Parametric Demand Distribution," Management Science, INFORMS, vol. 67(8), pages 4863-4879, August.
- Tsan-Ming Choi & Alexandre Dolgui & Dmitry Ivanov & Erwin Pesch, 2022. "OR and analytics for digital, resilient, and sustainable manufacturing 4.0," Annals of Operations Research, Springer, vol. 310(1), pages 1-6, March.
- Erkip, Nesim Kohen, 2023. "Can accessing much data reshape the theory? Inventory theory under the challenge of data-driven systems," European Journal of Operational Research, Elsevier, vol. 308(3), pages 949-959.
- Soham Ghosh & Sujay Mukhoti, 2023. "Non-parametric generalised newsvendor model," Annals of Operations Research, Springer, vol. 321(1), pages 241-266, February.
- Hossein Abouee‐Mehrizi & Mahdi Mirjalili & Vahid Sarhangian, 2022. "Data‐driven platelet inventory management under uncertainty in the remaining shelf life of units," Production and Operations Management, Production and Operations Management Society, vol. 31(10), pages 3914-3932, October.
- Yinchu Zhu & Ilya O. Ryzhov, 2022. "Optimal data-driven hiring with equity for underrepresented groups," Papers 2206.09300, arXiv.org.
- Harun Avci & Kagan Gokbayrak & Emre Nadar, 2020. "Structural Results for Average‐Cost Inventory Models with Markov‐Modulated Demand and Partial Information," Production and Operations Management, Production and Operations Management Society, vol. 29(1), pages 156-173, January.
- Lin An & Andrew A. Li & Benjamin Moseley & R. Ravi, 2023. "The Nonstationary Newsvendor with (and without) Predictions," Papers 2305.07993, arXiv.org, revised Jul 2024.
- Liu, Congzheng & Zhu, Wenqi, 2024. "Newsvendor conditional value-at-risk minimisation: A feature-based approach under adaptive data selection," European Journal of Operational Research, Elsevier, vol. 313(2), pages 548-564.
- Velibor V. Mišić & Georgia Perakis, 2020. "Data Analytics in Operations Management: A Review," Manufacturing & Service Operations Management, INFORMS, vol. 22(1), pages 158-169, January.
- Joaquin Gonzalez & Liliana Avelar Sosa & Gabriel Bravo & Oliverio Cruz-Mejia & Jose-Manuel Mejia-Muñoz, 2024. "Fog Computing and Industry 4.0 for Newsvendor Inventory Model Using Attention Mechanism and Gated Recurrent Unit," Logistics, MDPI, vol. 8(2), pages 1-14, June.
- Xiong, Xing & Li, Yanzhi & Yang, Wenguo & Shen, Huaxiao, 2022. "Data-driven robust dual-sourcing inventory management under purchase price and demand uncertainties," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 160(C).
- Serrano, Breno & Minner, Stefan & Schiffer, Maximilian & Vidal, Thibaut, 2024. "Bilevel optimization for feature selection in the data-driven newsvendor problem," European Journal of Operational Research, Elsevier, vol. 315(2), pages 703-714.
- Jun Li & Yizhe Huang & Yan‐Fu Li & Shuming Wang, 2023. "Redundancy allocation under state‐dependent distributional uncertainty of component lifetimes," Production and Operations Management, Production and Operations Management Society, vol. 32(3), pages 930-950, March.
- Notz, Pascal M. & Pibernik, Richard, 2024. "Explainable subgradient tree boosting for prescriptive analytics in operations management," European Journal of Operational Research, Elsevier, vol. 312(3), pages 1119-1133.
- Huang, Di & Zhang, Jinyu & Liu, Zhiyuan & He, Yiliu & Liu, Pan, 2024. "A novel ranking method based on semi-SPO for battery swapping allocation optimization in a hybrid electric transit system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 188(C).
- Notz, Pascal M. & Wolf, Peter K. & Pibernik, Richard, 2023. "Prescriptive analytics for a multi-shift staffing problem," European Journal of Operational Research, Elsevier, vol. 305(2), pages 887-901.
- Christian Mandl & Selvaprabu Nadarajah & Stefan Minner & Srinagesh Gavirneni, 2022. "Data‐driven storage operations: Cross‐commodity backtest and structured policies," Production and Operations Management, Production and Operations Management Society, vol. 31(6), pages 2438-2456, June.
- Bingnan Yang & Xianhao Xu & Yeming Gong & Yacine Rekik, 2024. "Data-driven optimization models for inventory and financing decisions in online retailing platforms," Annals of Operations Research, Springer, vol. 339(1), pages 741-764, August.
- Junfei Huang & Avishai Mandelbaum & Petar Momčilović, 2022. "Appointment-driven service systems with many servers," Queueing Systems: Theory and Applications, Springer, vol. 100(3), pages 529-531, April.
- Pirayesh Neghab, Davood & Khayyati, Siamak & Karaesmen, Fikri, 2022. "An integrated data-driven method using deep learning for a newsvendor problem with unobservable features," European Journal of Operational Research, Elsevier, vol. 302(2), pages 482-496.
- Mengshi Lu & Zuo‐Jun Max Shen, 2021. "A Review of Robust Operations Management under Model Uncertainty," Production and Operations Management, Production and Operations Management Society, vol. 30(6), pages 1927-1943, June.
- Yunxiao Deng & Suvrajeet Sen, 2022. "Predictive stochastic programming," Computational Management Science, Springer, vol. 19(1), pages 65-98, January.
- Shaochong Lin & Youhua (Frank) Chen & Yanzhi Li & Zuo‐Jun Max Shen, 2022. "Data‐Driven Newsvendor Problems Regularized by a Profit Risk Constraint," Production and Operations Management, Production and Operations Management Society, vol. 31(4), pages 1630-1644, April.
- Yen, Benjamin P.-C. & Luo, Yu, 2023. "Navigational guidance – A deep learning approach," European Journal of Operational Research, Elsevier, vol. 310(3), pages 1179-1191.
- John P. Saldanha & Bradley S. Price & Douglas J. Thomas, 2023. "A nonparametric approach for setting safety stock levels," Production and Operations Management, Production and Operations Management Society, vol. 32(4), pages 1150-1168, April.
- Pascal M. Notz & Richard Pibernik, 2022. "Prescriptive Analytics for Flexible Capacity Management," Management Science, INFORMS, vol. 68(3), pages 1756-1775, March.