IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v68y2022i3p1923-1937.html
   My bibliography  Save this article

A Statistical Learning Approach to Personalization in Revenue Management

Author

Listed:
  • Xi Chen

    (Leonard N. Stern School of Business, New York University, New York, New York 10012-1126)

  • Zachary Owen
  • Clark Pixton

    (Marriott School of Business, Brigham Young University, Provo, Utah 84602)

  • David Simchi-Levi

    (Institute for Data, Systems, and Society, Department of Civil and Environmental Engineering and Operations Research Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142)

Abstract

We consider a logit model-based framework for modeling joint pricing and assortment decisions that take into account customer features. This model provides a significant advantage when one has insufficient data for any one customer and wishes to generalize learning about one customer’s preferences to the population. Under this model, we study the statistical learning task of model fitting from a static store of precollected customer data. This setting, in contrast to the popular learning and earning paradigm, represents the situation many business teams encounter in which their data collection abilities have outstripped their data analysis capabilities. In this learning setting, we establish finite-sample convergence guarantees on the model parameters. The parameter convergence guarantees are then extended to out-of-sample performance guarantees in terms of revenue, in the form of a high-probability bound on the gap between the expected revenue of the best action taken under the estimated parameters and the revenue generated by a decision maker with full knowledge of the choice model. We further discuss practical implications of these bounds. We demonstrate the personalization approach using ticket purchase data from an airline carrier.

Suggested Citation

  • Xi Chen & Zachary Owen & Clark Pixton & David Simchi-Levi, 2022. "A Statistical Learning Approach to Personalization in Revenue Management," Management Science, INFORMS, vol. 68(3), pages 1923-1937, March.
  • Handle: RePEc:inm:ormnsc:v:68:y:2022:i:3:p:1923-1937
    DOI: 10.1287/mnsc.2020.3772
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.2020.3772
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.2020.3772?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gah-Yi Ban & Cynthia Rudin, 2019. "The Big Data Newsvendor: Practical Insights from Machine Learning," Operations Research, INFORMS, vol. 67(1), pages 90-108, January.
    2. Jonathan Z. Zhang & Oded Netzer & Asim Ansari, 2014. "Dynamic Targeted Pricing in B2B Relationships," Marketing Science, INFORMS, vol. 33(3), pages 317-337, May.
    3. Garrett van Ryzin & Siddharth Mahajan, 1999. "On the Relationship Between Inventory Costs and Variety Benefits in Retail Assortments," Management Science, INFORMS, vol. 45(11), pages 1496-1509, November.
    4. B. P. S. Murthi & Sumit Sarkar, 2003. "The Role of the Management Sciences in Research on Personalization," Management Science, INFORMS, vol. 49(10), pages 1344-1362, October.
    5. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, September.
    6. Hongmin Li & Woonghee Tim Huh, 2011. "Pricing Multiple Products with the Multinomial Logit and Nested Logit Models: Concavity and Implications," Manufacturing & Service Operations Management, INFORMS, vol. 13(4), pages 549-563, October.
    7. Zhengliang Xue & Zizhuo Wang & Markus Ettl, 2016. "Pricing Personalized Bundles: A New Approach and An Empirical Study," Manufacturing & Service Operations Management, INFORMS, vol. 18(1), pages 51-68, February.
    8. Negin Golrezaei & Hamid Nazerzadeh & Paat Rusmevichientong, 2014. "Real-Time Optimization of Personalized Assortments," Management Science, INFORMS, vol. 60(6), pages 1532-1551, June.
    9. Goker Aydin & Serhan Ziya, 2008. "Pricing Promotional Products Under Upselling," Manufacturing & Service Operations Management, INFORMS, vol. 10(3), pages 360-376, June.
    10. Jie Zhang & Lakshman Krishnamurthi, 2004. "Customizing Promotions in Online Stores," Marketing Science, INFORMS, vol. 23(4), pages 561-578, June.
    11. Guillermo Gallego & Huseyin Topaloglu, 2014. "Constrained Assortment Optimization for the Nested Logit Model," Management Science, INFORMS, vol. 60(10), pages 2583-2601, October.
    12. Goker Aydin & Serhan Ziya, 2009. "Technical Note---Personalized Dynamic Pricing of Limited Inventories," Operations Research, INFORMS, vol. 57(6), pages 1523-1531, December.
    13. Arora, Neeraj & Huber, Joel, 2001. "Improving Parameter Estimates and Model Prediction by Aggregate Customization in Choice Experiments," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 28(2), pages 273-283, September.
    14. Krista J. Li & Sanjay Jain, 2016. "Behavior-Based Pricing: An Analysis of the Impact of Peer-Induced Fairness," Management Science, INFORMS, vol. 62(9), pages 2705-2721, September.
    15. Chenhao Du & William L. Cooper & Zizhuo Wang, 2016. "Optimal Pricing for a Multinomial Logit Choice Model with Network Effects," Operations Research, INFORMS, vol. 64(2), pages 441-455, April.
    16. Kalyan Talluri & Garrett van Ryzin, 2004. "Revenue Management Under a General Discrete Choice Model of Consumer Behavior," Management Science, INFORMS, vol. 50(1), pages 15-33, January.
    17. Guillermo Gallego & Ruxian Wang, 2014. "Multiproduct Price Optimization and Competition Under the Nested Logit Model with Product-Differentiated Price Sensitivities," Operations Research, INFORMS, vol. 62(2), pages 450-461, April.
    18. Paat Rusmevichientong & Zuo-Jun Max Shen & David B. Shmoys, 2010. "Dynamic Assortment Optimization with a Multinomial Logit Choice Model and Capacity Constraint," Operations Research, INFORMS, vol. 58(6), pages 1666-1680, December.
    19. Peter P. Belobaba, 1989. "OR Practice—Application of a Probabilistic Decision Model to Airline Seat Inventory Control," Operations Research, INFORMS, vol. 37(2), pages 183-197, April.
    20. Serguei Netessine & Sergei Savin & Wenqiang Xiao, 2006. "Revenue Management Through Dynamic Cross Selling in E-Commerce Retailing," Operations Research, INFORMS, vol. 54(5), pages 893-913, October.
    21. Fernando Bernstein & A. Gürhan Kök & Lei Xie, 2015. "Dynamic Assortment Customization with Limited Inventories," Manufacturing & Service Operations Management, INFORMS, vol. 17(4), pages 538-553, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Yi-Chun & Yang, Xiangqian, 2023. "Information design in optimal auctions," Journal of Economic Theory, Elsevier, vol. 212(C).
    2. Gu, Wei & Luo, Jing & Yu, Xiaoru & Zhang, Wenqing & Li, Baixun, 2023. "Dynamic decisions between sellers and consumers in online second-hand trading platforms: Evidence from C2C transactions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
    3. Gür Ali, Özden & Amorim, Pedro, 2024. "Personalized choice model for forecasting demand under pricing scenarios with observational data—The case of attended home delivery," International Journal of Forecasting, Elsevier, vol. 40(2), pages 706-720.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guillermo Gallego & Haengju Lee, 2020. "Callable products with dependent demands," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(3), pages 185-200, April.
    2. Aydın Alptekinoğlu & John H. Semple, 2016. "The Exponomial Choice Model: A New Alternative for Assortment and Price Optimization," Operations Research, INFORMS, vol. 64(1), pages 79-93, February.
    3. Ruxian Wang & Zizhuo Wang, 2017. "Consumer Choice Models with Endogenous Network Effects," Management Science, INFORMS, vol. 63(11), pages 3944-3960, November.
    4. Kameng Nip & Zhenbo Wang & Zizhuo Wang, 2021. "Assortment Optimization under a Single Transition Choice Model," Production and Operations Management, Production and Operations Management Society, vol. 30(7), pages 2122-2142, July.
    5. Rui Chen & Hai Jiang, 2020. "Capacitated assortment and price optimization under the nested logit model," Journal of Global Optimization, Springer, vol. 77(4), pages 895-918, August.
    6. Pol Boada-Collado & Victor Martínez-de-Albéniz, 2020. "Estimating and Optimizing the Impact of Inventory on Consumer Choices in a Fashion Retail Setting," Manufacturing & Service Operations Management, INFORMS, vol. 22(3), pages 582-597, May.
    7. Muzaffer Buyruk & Ertan Güner, 2022. "Personalization in airline revenue management: an overview and future outlook," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 21(2), pages 129-139, April.
    8. Strauss, Arne K. & Klein, Robert & Steinhardt, Claudius, 2018. "A review of choice-based revenue management: Theory and methods," European Journal of Operational Research, Elsevier, vol. 271(2), pages 375-387.
    9. Guillermo Gallego & Anran Li & Van-Anh Truong & Xinshang Wang, 2020. "Approximation Algorithms for Product Framing and Pricing," Operations Research, INFORMS, vol. 68(1), pages 134-160, January.
    10. Guang Li & Paat Rusmevichientong & Huseyin Topaloglu, 2015. "The d -Level Nested Logit Model: Assortment and Price Optimization Problems," Operations Research, INFORMS, vol. 63(2), pages 325-342, April.
    11. Markus Ettl & Pavithra Harsha & Anna Papush & Georgia Perakis, 2020. "A Data-Driven Approach to Personalized Bundle Pricing and Recommendation," Manufacturing & Service Operations Management, INFORMS, vol. 22(3), pages 461-480, May.
    12. Maxime C. Cohen & Renyu Zhang, 2022. "Competition and coopetition for two‐sided platforms," Production and Operations Management, Production and Operations Management Society, vol. 31(5), pages 1997-2014, May.
    13. Antoine Désir & Vineet Goyal & Danny Segev & Chun Ye, 2020. "Constrained Assortment Optimization Under the Markov Chain–based Choice Model," Management Science, INFORMS, vol. 66(2), pages 698-721, February.
    14. Wang, Mengmeng & Zhang, Xun & Li, Xiaolong, 2023. "Multiple-purchase choice model: estimation and optimization," International Journal of Production Economics, Elsevier, vol. 265(C).
    15. Fernando Bernstein & A. Gürhan Kök & Lei Xie, 2015. "Dynamic Assortment Customization with Limited Inventories," Manufacturing & Service Operations Management, INFORMS, vol. 17(4), pages 538-553, October.
    16. Rui Chen & Hai Jiang, 2020. "Assortment optimization with position effects under the nested logit model," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(1), pages 21-33, February.
    17. Fatemeh Nosrat & William L. Cooper & Zizhuo Wang, 2021. "Pricing for a product with network effects and mixed logit demand," Naval Research Logistics (NRL), John Wiley & Sons, vol. 68(2), pages 159-182, March.
    18. H. Sebastian Heese & Victor Martínez-de-Albéniz, 2018. "Effects of Assortment Breadth Announcements on Manufacturer Competition," Manufacturing & Service Operations Management, INFORMS, vol. 20(2), pages 302-316, May.
    19. Aparna Jayaram & R. K. Amit & Amit Agarwal & Xiaodong Luo, 2024. "Elasticity-integrated pricing and allocation heuristic for airline revenue management," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 23(4), pages 305-317, August.
    20. W. Zachary Rayfield & Paat Rusmevichientong & Huseyin Topaloglu, 2015. "Approximation Methods for Pricing Problems Under the Nested Logit Model with Price Bounds," INFORMS Journal on Computing, INFORMS, vol. 27(2), pages 335-357, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:68:y:2022:i:3:p:1923-1937. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.