IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v316y2024i1p341-360.html
   My bibliography  Save this article

A data-driven approach for optimal operational and financial commodity hedging

Author

Listed:
  • Rettinger, Moritz
  • Mandl, Christian
  • Minner, Stefan

Abstract

Commodity price risk management has been subject to various modeling and optimization approaches. Recently, data-driven policies focusing on the decision rather than prediction quality have been developed to overcome price model misspecification. Yet, in the context of data-driven commodity purchasing, the existing literature either considers anticipatory inventory management or forward contracting where the decision frequency corresponds to the maturity of the traded contracts. We prove the optimality of a novel procurement policy combining operational and financial instruments with decision granularities independent of the derivative’s maturity. A mixed-integer programming model is developed to train policy parameters efficiently. We study the implications of policy complexity for learning-stability and out-of-sample generalization. Finally, we backtest the data-driven policy on real market data of four major commodities (i.e., copper, nickel, corn, and soybean) over ten years and show that the average savings potential of a combined financial and operational procurement policy compared to single-instrument strategies is up to 6.38% for corn where warehousing can efficiently mitigate price seasonality. The approach hedges corn and soybean commodities more efficiently through inventories while copper and nickel can be hedged efficiently by leveraging available financial instruments. Best model results are identified for a decision granularity with fewer parameters as high-frequent decisions deteriorate learning stability and model generalization.

Suggested Citation

  • Rettinger, Moritz & Mandl, Christian & Minner, Stefan, 2024. "A data-driven approach for optimal operational and financial commodity hedging," European Journal of Operational Research, Elsevier, vol. 316(1), pages 341-360.
  • Handle: RePEc:eee:ejores:v:316:y:2024:i:1:p:341-360
    DOI: 10.1016/j.ejor.2024.01.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221724000456
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2024.01.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gah-Yi Ban & Cynthia Rudin, 2019. "The Big Data Newsvendor: Practical Insights from Machine Learning," Operations Research, INFORMS, vol. 67(1), pages 90-108, January.
    2. Peter Berling & Victor Martínez-de-Albéniz, 2011. "Optimal Inventory Policies when Purchase Price and Demand Are Stochastic," Operations Research, INFORMS, vol. 59(1), pages 109-124, February.
    3. Hay, George A & Holt, Charles C, 1975. "A General Solution for Linear Decision Rules: An Optimal Dynamic Strategy Applicable under Uncertainty," Econometrica, Econometric Society, vol. 43(2), pages 231-259, March.
    4. Victor DeMiguel & Lorenzo Garlappi & Raman Uppal, 2009. "Optimal Versus Naive Diversification: How Inefficient is the 1-N Portfolio Strategy?," The Review of Financial Studies, Society for Financial Studies, vol. 22(5), pages 1915-1953, May.
    5. Eduardo Schwartz & James E. Smith, 2000. "Short-Term Variations and Long-Term Dynamics in Commodity Prices," Management Science, INFORMS, vol. 46(7), pages 893-911, July.
    6. Dimitris Bertsimas & Nathan Kallus, 2020. "From Predictive to Prescriptive Analytics," Management Science, INFORMS, vol. 66(3), pages 1025-1044, March.
    7. Sánchez Lasheras, Fernando & de Cos Juez, Francisco Javier & Suárez Sánchez, Ana & Krzemień, Alicja & Riesgo Fernández, Pedro, 2015. "Forecasting the COMEX copper spot price by means of neural networks and ARIMA models," Resources Policy, Elsevier, vol. 45(C), pages 37-43.
    8. Wei Xing & Shanshan Ma & Xuan Zhao & Liming Liu, 2022. "Operational hedging or financial hedging? Strategic risk management in commodity procurement," Production and Operations Management, Production and Operations Management Society, vol. 31(8), pages 3233-3263, August.
    9. Hélyette Geman & Vu-Nhat Nguyen, 2005. "Soybean Inventory and Forward Curve Dynamics," Management Science, INFORMS, vol. 51(7), pages 1076-1091, July.
    10. Nicola Secomandi, 2015. "Merchant Commodity Storage Practice Revisited," Operations Research, INFORMS, vol. 63(5), pages 1131-1143, October.
    11. Davidson Heath, 2019. "Macroeconomic Factors in Oil Futures Markets," Management Science, INFORMS, vol. 65(9), pages 4407-4421, September.
    12. repec:dau:papers:123456789/1937 is not listed on IDEAS
    13. Karl Inderfurth & Peter Kelle & Rainer Kleber, 2018. "Inventory control in dual sourcing commodity procurement with price correlation," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(1), pages 93-119, March.
    14. Basil A. Kalymon, 1971. "Stochastic Prices in a Single-Item Inventory Purchasing Model," Operations Research, INFORMS, vol. 19(6), pages 1434-1458, October.
    15. Peter R. Hansen & Asger Lunde & James M. Nason, 2011. "The Model Confidence Set," Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
    16. Geman, Hélyette & Smith, William O., 2013. "Theory of storage, inventory and volatility in the LME base metals," Resources Policy, Elsevier, vol. 38(1), pages 18-28.
    17. Ankur Goel & Genaro J. Gutierrez, 2011. "Multiechelon Procurement and Distribution Policies for Traded Commodities," Management Science, INFORMS, vol. 57(12), pages 2228-2244, December.
    18. Inderfurth, Karl & Kelle, Peter & Kleber, Rainer, 2013. "Dual sourcing using capacity reservation and spot market: Optimal procurement policy and heuristic parameter determination," European Journal of Operational Research, Elsevier, vol. 225(2), pages 298-309.
    19. Angelos Georghiou & Daniel Kuhn & Wolfram Wiesemann, 2019. "The decision rule approach to optimization under uncertainty: methodology and applications," Computational Management Science, Springer, vol. 16(4), pages 545-576, October.
    20. Selvaprabu Nadarajah & François Margot & Nicola Secomandi, 2015. "Relaxations of Approximate Linear Programs for the Real Option Management of Commodity Storage," Management Science, INFORMS, vol. 61(12), pages 3054-3076, December.
    21. Yudong Wang & Chongfeng Wu & Li Yang, 2015. "Hedging with Futures: Does Anything Beat the Naïve Hedging Strategy?," Management Science, INFORMS, vol. 61(12), pages 2870-2889, December.
    22. Nicola Secomandi, 2010. "Optimal Commodity Trading with a Capacitated Storage Asset," Management Science, INFORMS, vol. 56(3), pages 449-467, March.
    23. Schwartz, Eduardo S, 1997. "The Stochastic Behavior of Commodity Prices: Implications for Valuation and Hedging," Journal of Finance, American Finance Association, vol. 52(3), pages 923-973, July.
    24. Ankur Goel & Fehmi Tanrisever, 2017. "Financial Hedging and Optimal Procurement Policies under Correlated Price and Demand," Production and Operations Management, Production and Operations Management Society, vol. 26(10), pages 1924-1945, October.
    25. Jianghua Zhang & Felix T. S. Chan & Xinsheng Xu, 2023. "Data-driven analysis on optimal purchasing decisions in combined procurement," International Journal of Production Research, Taylor & Francis Journals, vol. 61(13), pages 4265-4278, July.
    26. Gonzalo Cortazar & Cristobal Millard & Hector Ortega & Eduardo S. Schwartz, 2019. "Commodity Price Forecasts, Futures Prices, and Pricing Models," Management Science, INFORMS, vol. 65(9), pages 4141-4155, September.
    27. Guoming Lai & François Margot & Nicola Secomandi, 2010. "An Approximate Dynamic Programming Approach to Benchmark Practice-Based Heuristics for Natural Gas Storage Valuation," Operations Research, INFORMS, vol. 58(3), pages 564-582, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christian Mandl & Selvaprabu Nadarajah & Stefan Minner & Srinagesh Gavirneni, 2022. "Data‐driven storage operations: Cross‐commodity backtest and structured policies," Production and Operations Management, Production and Operations Management Society, vol. 31(6), pages 2438-2456, June.
    2. Jiao Wang & Lima Zhao & Arnd Huchzermeier, 2021. "Operations‐Finance Interface in Risk Management: Research Evolution and Opportunities," Production and Operations Management, Production and Operations Management Society, vol. 30(2), pages 355-389, February.
    3. Secomandi, Nicola & Seppi, Duane J., 2014. "Real Options and Merchant Operations of Energy and Other Commodities," Foundations and Trends(R) in Technology, Information and Operations Management, now publishers, vol. 6(3-4), pages 161-331, July.
    4. Anna Maria Gambaro & Nicola Secomandi, 2021. "A Discussion of Non‐Gaussian Price Processes for Energy and Commodity Operations," Production and Operations Management, Production and Operations Management Society, vol. 30(1), pages 47-67, January.
    5. Nadarajah, Selvaprabu & Secomandi, Nicola, 2023. "A review of the operations literature on real options in energy," European Journal of Operational Research, Elsevier, vol. 309(2), pages 469-487.
    6. Canyakmaz, Caner & Özekici, Süleyman & Karaesmen, Fikri, 2024. "Risk management through financial hedging in inventory systems with stochastic price processes," International Journal of Production Economics, Elsevier, vol. 270(C).
    7. Güllü, Refik & Erkip, Nesim, 2024. "Risk pooling under demand and price uncertainty," European Journal of Operational Research, Elsevier, vol. 315(1), pages 120-129.
    8. Nicola Secomandi & Guoming Lai & François Margot & Alan Scheller-Wolf & Duane J. Seppi, 2015. "Merchant Commodity Storage and Term-Structure Model Error," Manufacturing & Service Operations Management, INFORMS, vol. 17(3), pages 302-320, July.
    9. Karl Inderfurth & Peter Kelle & Rainer Kleber, 2014. "The Effect of Material Price and Product Demand Correlations on Combined Sourcing and Inventory Management," FEMM Working Papers 140013, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    10. Alain Bensoussan & Benoit Chevalier-Roignant & Alejandro Rivera, 2022. "A model for wind farm management with option interactions," Post-Print hal-04325553, HAL.
    11. Canyakmaz, Caner & Özekici, Süleyman & Karaesmen, Fikri, 2019. "An inventory model where customer demand is dependent on a stochastic price process," International Journal of Production Economics, Elsevier, vol. 212(C), pages 139-152.
    12. Youhua (Frank) Chen & Weili Xue & Jian Yang, 2013. "Technical Note---Optimal Inventory Policy in the Presence of a Long-Term Supplier and a Spot Market," Operations Research, INFORMS, vol. 61(1), pages 88-97, February.
    13. Peter Berling & Victor Martínez-de-Albéniz, 2011. "Optimal Inventory Policies when Purchase Price and Demand Are Stochastic," Operations Research, INFORMS, vol. 59(1), pages 109-124, February.
    14. Sel, Burakhan & Minner, Stefan, 2022. "A hedging policy for seaborne forward freight markets based on probabilistic forecasts," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    15. Roozbeh Qorbanian & Nils Lohndorf & David Wozabal, 2024. "Valuation of Power Purchase Agreements for Corporate Renewable Energy Procurement," Papers 2403.08846, arXiv.org.
    16. Guoming Lai & Mulan X. Wang & Sunder Kekre & Alan Scheller-Wolf & Nicola Secomandi, 2011. "Valuation of Storage at a Liquefied Natural Gas Terminal," Operations Research, INFORMS, vol. 59(3), pages 602-616, June.
    17. Nadarajah, Selvaprabu & Margot, François & Secomandi, Nicola, 2017. "Comparison of least squares Monte Carlo methods with applications to energy real options," European Journal of Operational Research, Elsevier, vol. 256(1), pages 196-204.
    18. Gürel, Yücel & Güllü, Refik, 2019. "Effect of a secondary market on a system with random demand and uncertain costs," International Journal of Production Economics, Elsevier, vol. 209(C), pages 112-120.
    19. Canyakmaz, Caner & Özekici, Süleyman & Karaesmen, Fikri, 2022. "A newsvendor problem with markup pricing in the presence of within-period price fluctuations," European Journal of Operational Research, Elsevier, vol. 301(1), pages 153-162.
    20. Karl Inderfurth & Peter Kelle & Rainer Kleber, 2018. "Inventory control in dual sourcing commodity procurement with price correlation," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(1), pages 93-119, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:316:y:2024:i:1:p:341-360. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.