IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v108y2022ics0305048321001845.html
   My bibliography  Save this article

A bilevel framework for decision-making under uncertainty with contextual information

Author

Listed:
  • Muñoz, M.A.
  • Pineda, S.
  • Morales, J.M.

Abstract

In this paper, we propose a novel approach for data-driven decision-making under uncertainty in the presence of contextual information. Given a finite collection of observations of the uncertain parameters and potential explanatory variables (i.e., the contextual information), our approach fits a parametric model to those data that is specifically tailored to maximizing the decision value, while accounting for possible feasibility constraints. From a mathematical point of view, our framework translates into a bilevel program, for which we provide both a fast regularization procedure and a big-M-based reformulation that can be solved using off-the-shelf optimization solvers. We showcase the benefits of moving from the traditional scheme for model estimation (based on statistical quality metrics) to decision-guided prediction using three different practical problems. We also compare our approach with existing ones in a realistic case study that considers a strategic power producer that participates in the Iberian electricity market. Finally, we use these numerical simulations to analyze the conditions (in terms of the firm’s cost structure and production capacity) under which our approach proves to be more advantageous to the producer.

Suggested Citation

  • Muñoz, M.A. & Pineda, S. & Morales, J.M., 2022. "A bilevel framework for decision-making under uncertainty with contextual information," Omega, Elsevier, vol. 108(C).
  • Handle: RePEc:eee:jomega:v:108:y:2022:i:c:s0305048321001845
    DOI: 10.1016/j.omega.2021.102575
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305048321001845
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2021.102575?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gah-Yi Ban & Cynthia Rudin, 2019. "The Big Data Newsvendor: Practical Insights from Machine Learning," Operations Research, INFORMS, vol. 67(1), pages 90-108, January.
    2. Holger Scheel & Stefan Scholtes, 2000. "Mathematical Programs with Complementarity Constraints: Stationarity, Optimality, and Sensitivity," Mathematics of Operations Research, INFORMS, vol. 25(1), pages 1-22, February.
    3. Kostas Bimpikis & Shayan Ehsani & Rahmi İlkılıç, 2019. "Cournot Competition in Networked Markets," Management Science, INFORMS, vol. 67(6), pages 2467-2481, June.
    4. Bakker, Hannah & Dunke, Fabian & Nickel, Stefan, 2020. "A structuring review on multi-stage optimization under uncertainty: Aligning concepts from theory and practice," Omega, Elsevier, vol. 96(C).
    5. Zhaowei Hao & Long He & Zhenyu Hu & Jun Jiang, 2020. "Robust Vehicle Pre‐Allocation with Uncertain Covariates," Production and Operations Management, Production and Operations Management Society, vol. 29(4), pages 955-972, April.
    6. Dimitris Bertsimas & Nathan Kallus, 2020. "From Predictive to Prescriptive Analytics," Management Science, INFORMS, vol. 66(3), pages 1025-1044, March.
    7. Vives, Xavier, 1984. "Duopoly information equilibrium: Cournot and bertrand," Journal of Economic Theory, Elsevier, vol. 34(1), pages 71-94, October.
    8. Casorrán, Carlos & Fortz, Bernard & Labbé, Martine & Ordóñez, Fernando, 2019. "A study of general and security Stackelberg game formulations," European Journal of Operational Research, Elsevier, vol. 278(3), pages 855-868.
    9. Wu, Jianghua & Zhai, Xin & Huang, Zhimin, 2008. "Incentives for information sharing in duopoly with capacity constraints," Omega, Elsevier, vol. 36(6), pages 963-975, December.
    10. Blaise Allaz & Jean-Luc Vila, 1993. "Cournot Competition, Forward Markets and Efficiency," Post-Print hal-00511806, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:cte:wsrepe:34605 is not listed on IDEAS
    2. Bernardo K. Pagnoncelli & Domingo Ramírez & Hamed Rahimian & Arturo Cifuentes, 2023. "A Synthetic Data-Plus-Features Driven Approach for Portfolio Optimization," Computational Economics, Springer;Society for Computational Economics, vol. 62(1), pages 187-204, June.
    3. Corredera, Alberto & Ruiz, Carlos, 2023. "Prescriptive selection of machine learning hyperparameters with applications in power markets: Retailer’s optimal trading," European Journal of Operational Research, Elsevier, vol. 306(1), pages 370-388.
    4. Dai, Jingqi & Li, Zongmin, 2023. "An equilibrium approach towards sustainable operation of a modern coal chemical industrial park," Omega, Elsevier, vol. 120(C).
    5. Morales, J.M. & Muñoz, M.A. & Pineda, S., 2023. "Prescribing net demand for two-stage electricity generation scheduling," Operations Research Perspectives, Elsevier, vol. 10(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Serrano, Breno & Minner, Stefan & Schiffer, Maximilian & Vidal, Thibaut, 2024. "Bilevel optimization for feature selection in the data-driven newsvendor problem," European Journal of Operational Research, Elsevier, vol. 315(2), pages 703-714.
    2. Viet Anh Nguyen & Fan Zhang & Shanshan Wang & Jose Blanchet & Erick Delage & Yinyu Ye, 2021. "Robustifying Conditional Portfolio Decisions via Optimal Transport," Papers 2103.16451, arXiv.org, revised Apr 2024.
    3. Meng Qi & Ying Cao & Zuo-Jun (Max) Shen, 2022. "Distributionally Robust Conditional Quantile Prediction with Fixed Design," Management Science, INFORMS, vol. 68(3), pages 1639-1658, March.
    4. Jos'e-Manuel Pe~na & Fernando Su'arez & Omar Larr'e & Domingo Ram'irez & Arturo Cifuentes, 2023. "A Modified CTGAN-Plus-Features Based Method for Optimal Asset Allocation," Papers 2302.02269, arXiv.org, revised May 2024.
    5. Andreas Ehrenmann & Karsten Neuhoff, 2009. "A Comparison of Electricity Market Designs in Networks," Operations Research, INFORMS, vol. 57(2), pages 274-286, April.
    6. Yang, Cheng-Hu & Wang, Hai-Tang & Ma, Xin & Talluri, Srinivas, 2023. "A data-driven newsvendor problem: A high-dimensional and mixed-frequency method," International Journal of Production Economics, Elsevier, vol. 266(C).
    7. Adam N. Elmachtoub & Paul Grigas, 2022. "Smart “Predict, then Optimize”," Management Science, INFORMS, vol. 68(1), pages 9-26, January.
    8. Christian Mandl & Selvaprabu Nadarajah & Stefan Minner & Srinagesh Gavirneni, 2022. "Data‐driven storage operations: Cross‐commodity backtest and structured policies," Production and Operations Management, Production and Operations Management Society, vol. 31(6), pages 2438-2456, June.
    9. Andrew Butler & Roy H. Kwon, 2021. "Integrating prediction in mean-variance portfolio optimization," Papers 2102.09287, arXiv.org, revised Nov 2022.
    10. Jiang, Li & Hao, Zhongyuan, 2024. "Holding diverse market beliefs by firms: Information flow, profit performances, and channel structure," Omega, Elsevier, vol. 126(C).
    11. Shaochong Lin & Youhua (Frank) Chen & Yanzhi Li & Zuo‐Jun Max Shen, 2022. "Data‐Driven Newsvendor Problems Regularized by a Profit Risk Constraint," Production and Operations Management, Production and Operations Management Society, vol. 31(4), pages 1630-1644, April.
    12. Susan Athey & Stefan Wager, 2021. "Policy Learning With Observational Data," Econometrica, Econometric Society, vol. 89(1), pages 133-161, January.
    13. Nam Ho-Nguyen & Fatma Kılınç-Karzan, 2022. "Risk Guarantees for End-to-End Prediction and Optimization Processes," Management Science, INFORMS, vol. 68(12), pages 8680-8698, December.
    14. Liu, Congzheng & Letchford, Adam N. & Svetunkov, Ivan, 2022. "Newsvendor problems: An integrated method for estimation and optimisation," European Journal of Operational Research, Elsevier, vol. 300(2), pages 590-601.
    15. Corredera, Alberto & Ruiz, Carlos, 2023. "Prescriptive selection of machine learning hyperparameters with applications in power markets: Retailer’s optimal trading," European Journal of Operational Research, Elsevier, vol. 306(1), pages 370-388.
    16. Shuaian Wang & Xuecheng Tian, 2023. "A Deficiency of the Predict-Then-Optimize Framework: Decreased Decision Quality with Increased Data Size," Mathematics, MDPI, vol. 11(15), pages 1-9, July.
    17. Thais de Castro Moraes & Jiancheng Qin & Xue-Ming Yuan & Ek Peng Chew, 2023. "Evolving Hybrid Deep Neural Network Models for End-to-End Inventory Ordering Decisions," Logistics, MDPI, vol. 7(4), pages 1-18, November.
    18. Li, Xiaojing & Chen, Jing & Ai, Xingzheng, 2019. "Contract design in a cross-sales supply chain with demand information asymmetry," European Journal of Operational Research, Elsevier, vol. 275(3), pages 939-956.
    19. Erkip, Nesim Kohen, 2023. "Can accessing much data reshape the theory? Inventory theory under the challenge of data-driven systems," European Journal of Operational Research, Elsevier, vol. 308(3), pages 949-959.
    20. Yinchu Zhu & Ilya O. Ryzhov, 2022. "Optimal data-driven hiring with equity for underrepresented groups," Papers 2206.09300, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:108:y:2022:i:c:s0305048321001845. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.