IDEAS home Printed from https://ideas.repec.org/a/bla/popmgt/v31y2022i4p1630-1644.html
   My bibliography  Save this article

Data‐Driven Newsvendor Problems Regularized by a Profit Risk Constraint

Author

Listed:
  • Shaochong Lin
  • Youhua (Frank) Chen
  • Yanzhi Li
  • Zuo‐Jun Max Shen

Abstract

We study a risk‐averse newsvendor problem where demand distribution is unknown. The focal product is new, and only the historical demand information of related products is available. The newsvendor aims to maximize its expected profit subject to a profit risk constraint. We develop a model with a value‐at‐risk constraint and propose a data‐driven approximation to the theoretical risk‐averse newsvendor model. Specifically, we use machine learning methods to weight the similarity between the new product and the previous ones based on covariates. The sample‐dependent weights are then embedded to approximate the expected profit and the profit risk constraint. We show that the data‐driven risk‐averse newsvendor solution entails a closed‐form quantile structure and can be efficiently computed. Finally, we prove that this data‐driven solution is asymptotically optimal. Experiments based on real data and synthetic data demonstrate the effectiveness of our approach. We observe that under data‐driven decision‐making, the average realized profit may benefit from a stronger risk aversion, contrary to that in the theoretical risk‐averse newsvendor model. In fact, even a risk‐neutral newsvendor can benefit from incorporating a risk constraint under data‐driven decision‐making. This situation is due to the value‐at‐risk constraint that effectively plays a regularizing role (via reducing the variance of order quantities) in mitigating issues of data‐driven decision‐making, such as sampling error and model misspecification. However, the above‐mentioned effects diminish with the increase in the size of the training data set, as the asymptotic optimality result implies.

Suggested Citation

  • Shaochong Lin & Youhua (Frank) Chen & Yanzhi Li & Zuo‐Jun Max Shen, 2022. "Data‐Driven Newsvendor Problems Regularized by a Profit Risk Constraint," Production and Operations Management, Production and Operations Management Society, vol. 31(4), pages 1630-1644, April.
  • Handle: RePEc:bla:popmgt:v:31:y:2022:i:4:p:1630-1644
    DOI: 10.1111/poms.13635
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/poms.13635
    Download Restriction: no

    File URL: https://libkey.io/10.1111/poms.13635?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gah-Yi Ban & Cynthia Rudin, 2019. "The Big Data Newsvendor: Practical Insights from Machine Learning," Operations Research, INFORMS, vol. 67(1), pages 90-108, January.
    2. Houmin Yan & Candace Arai Yano & Hanqin Zhang, 2019. "Inventory Management under Periodic Profit Targets," Production and Operations Management, Production and Operations Management Society, vol. 28(6), pages 1387-1406, June.
    3. Panos Kouvelis & Rong Li, 2019. "Integrated Risk Management for Newsvendors with Value-at-Risk Constraints," Manufacturing & Service Operations Management, INFORMS, vol. 21(4), pages 816-832, October.
    4. Graham, John R. & Harvey, Campbell R. & Rajgopal, Shiva, 2005. "The economic implications of corporate financial reporting," Journal of Accounting and Economics, Elsevier, vol. 40(1-3), pages 3-73, December.
    5. Dimitris Bertsimas & Nathan Kallus, 2020. "From Predictive to Prescriptive Analytics," Management Science, INFORMS, vol. 66(3), pages 1025-1044, March.
    6. Gah-Yi Ban & Jérémie Gallien & Adam J. Mersereau, 2019. "Dynamic Procurement of New Products with Covariate Information: The Residual Tree Method," Manufacturing & Service Operations Management, INFORMS, vol. 21(4), pages 798-815, October.
    7. Christopher L. Culp & Merton H. Miller & Andrea M. P. Neves, 1998. "Value At Risk: Uses And Abuses," Journal of Applied Corporate Finance, Morgan Stanley, vol. 10(4), pages 26-38, January.
    8. Lucy Gongtao Chen & Daniel Zhuoyu Long & Georgia Perakis, 2015. "The Impact of a Target on Newsvendor Decisions," Manufacturing & Service Operations Management, INFORMS, vol. 17(1), pages 78-86, February.
    9. Jérémie Gallien & Adam J. Mersereau & Andres Garro & Alberte Dapena Mora & Martín Nóvoa Vidal, 2015. "Initial Shipment Decisions for New Products at Zara," Operations Research, INFORMS, vol. 63(2), pages 269-286, April.
    10. Dimitris Bertsimas & Nathan Kallus & Amjad Hussain, 2016. "Inventory Management in the Era of Big Data," Production and Operations Management, Production and Operations Management Society, vol. 25(12), pages 2006-2009, December.
    11. Retsef Levi & Robin O. Roundy & David B. Shmoys, 2007. "Provably Near-Optimal Sampling-Based Policies for Stochastic Inventory Control Models," Mathematics of Operations Research, INFORMS, vol. 32(4), pages 821-839, November.
    12. Lennart Baardman & Igor Levin & Georgia Perakis & Divya Singhvi, 2018. "Leveraging Comparables for New Product Sales Forecasting," Production and Operations Management, Production and Operations Management Society, vol. 27(12), pages 2340-2343, December.
    13. Beutel, Anna-Lena & Minner, Stefan, 2012. "Safety stock planning under causal demand forecasting," International Journal of Production Economics, Elsevier, vol. 140(2), pages 637-645.
    14. Qi Feng & J. George Shanthikumar, 2018. "How Research in Production and Operations Management May Evolve in the Era of Big Data," Production and Operations Management, Production and Operations Management Society, vol. 27(9), pages 1670-1684, September.
    15. Peter S. Fader & Bruce G. S. Hardie & Chun-Yao Huang, 2004. "A Dynamic Changepoint Model for New Product Sales Forecasting," Marketing Science, INFORMS, vol. 23(1), pages 50-65, October.
    16. Vipul Agrawal & Sridhar Seshadri, 2000. "Impact of Uncertainty and Risk Aversion on Price and Order Quantity in the Newsvendor Problem," Manufacturing & Service Operations Management, INFORMS, vol. 2(4), pages 410-423, July.
    17. Velibor V. Mišić & Georgia Perakis, 2020. "Data Analytics in Operations Management: A Review," Manufacturing & Service Operations Management, INFORMS, vol. 22(1), pages 158-169, January.
    18. Abbas A. Kurawarwala & Hirofumi Matsuo, 1996. "Forecasting and Inventory Management of Short Life-Cycle Products," Operations Research, INFORMS, vol. 44(1), pages 131-150, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tian, Yu-Xin & Zhang, Chuan, 2023. "An end-to-end deep learning model for solving data-driven newsvendor problem with accessibility to textual review data," International Journal of Production Economics, Elsevier, vol. 265(C).
    2. Jammernegg, Werner & Kischka, Peter & Silbermayr, Lena, 2024. "Risk preferences, newsvendor orders and supply chain coordination using the Mean-CVaR model," International Journal of Production Economics, Elsevier, vol. 270(C).
    3. Rung-Hung Su & Tse-Min Tseng & Chun Lin, 2024. "Integrated Profitability Evaluation for a Newsboy-Type Product in Own Brand Manufacturers," Mathematics, MDPI, vol. 12(4), pages 1-23, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Cheng-Hu & Wang, Hai-Tang & Ma, Xin & Talluri, Srinivas, 2023. "A data-driven newsvendor problem: A high-dimensional and mixed-frequency method," International Journal of Production Economics, Elsevier, vol. 266(C).
    2. Erkip, Nesim Kohen, 2023. "Can accessing much data reshape the theory? Inventory theory under the challenge of data-driven systems," European Journal of Operational Research, Elsevier, vol. 308(3), pages 949-959.
    3. Serrano, Breno & Minner, Stefan & Schiffer, Maximilian & Vidal, Thibaut, 2024. "Bilevel optimization for feature selection in the data-driven newsvendor problem," European Journal of Operational Research, Elsevier, vol. 315(2), pages 703-714.
    4. Adam N. Elmachtoub & Paul Grigas, 2022. "Smart “Predict, then Optimize”," Management Science, INFORMS, vol. 68(1), pages 9-26, January.
    5. Thais de Castro Moraes & Jiancheng Qin & Xue-Ming Yuan & Ek Peng Chew, 2023. "Evolving Hybrid Deep Neural Network Models for End-to-End Inventory Ordering Decisions," Logistics, MDPI, vol. 7(4), pages 1-18, November.
    6. Olivares-Nadal, Alba V., 2024. "Constructing decision rules for multiproduct newsvendors: An integrated estimation-and-optimization framework," European Journal of Operational Research, Elsevier, vol. 315(3), pages 1021-1037.
    7. Meng Qi & Ying Cao & Zuo-Jun (Max) Shen, 2022. "Distributionally Robust Conditional Quantile Prediction with Fixed Design," Management Science, INFORMS, vol. 68(3), pages 1639-1658, March.
    8. Liu, Congzheng & Letchford, Adam N. & Svetunkov, Ivan, 2022. "Newsvendor problems: An integrated method for estimation and optimisation," European Journal of Operational Research, Elsevier, vol. 300(2), pages 590-601.
    9. Fildes, Robert & Ma, Shaohui & Kolassa, Stephan, 2022. "Retail forecasting: Research and practice," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1283-1318.
    10. Yinchu Zhu & Ilya O. Ryzhov, 2022. "Optimal data-driven hiring with equity for underrepresented groups," Papers 2206.09300, arXiv.org.
    11. Xiong, Xing & Li, Yanzhi & Yang, Wenguo & Shen, Huaxiao, 2022. "Data-driven robust dual-sourcing inventory management under purchase price and demand uncertainties," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 160(C).
    12. Georgia Perakis & Melvyn Sim & Qinshen Tang & Peng Xiong, 2023. "Robust Pricing and Production with Information Partitioning and Adaptation," Management Science, INFORMS, vol. 69(3), pages 1398-1419, March.
    13. Yi‐Jen (Ian) Ho & Siyuan Liu & Jingchuan Pu & Dian Zhang, 2022. "Is it all about you or your driving? Designing IoT‐enabled risk assessments," Production and Operations Management, Production and Operations Management Society, vol. 31(11), pages 4205-4222, November.
    14. Panos Kouvelis & Rong Li, 2019. "Integrated Risk Management for Newsvendors with Value-at-Risk Constraints," Manufacturing & Service Operations Management, INFORMS, vol. 21(4), pages 816-832, October.
    15. Meng Qi & Ho‐Yin Mak & Zuo‐Jun Max Shen, 2020. "Data‐driven research in retail operations—A review," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(8), pages 595-616, December.
    16. Jinzhi Bu & David Simchi-Levi & Li Wang, 2023. "Offline Pricing and Demand Learning with Censored Data," Management Science, INFORMS, vol. 69(2), pages 885-903, February.
    17. Zhen-Yu Chen & Zhi-Ping Fan & Minghe Sun, 2023. "Machine Learning Methods for Data-Driven Demand Estimation and Assortment Planning Considering Cross-Selling and Substitutions," INFORMS Journal on Computing, INFORMS, vol. 35(1), pages 158-177, January.
    18. Felix Wick & Ulrich Kerzel & Martin Hahn & Moritz Wolf & Trapti Singhal & Daniel Stemmer & Jakob Ernst & Michael Feindt, 2021. "Demand Forecasting of Individual Probability Density Functions with Machine Learning," SN Operations Research Forum, Springer, vol. 2(3), pages 1-39, September.
    19. Pirayesh Neghab, Davood & Khayyati, Siamak & Karaesmen, Fikri, 2022. "An integrated data-driven method using deep learning for a newsvendor problem with unobservable features," European Journal of Operational Research, Elsevier, vol. 302(2), pages 482-496.
    20. Qi Feng & J. George Shanthikumar, 2022. "Developing operations management data analytics," Production and Operations Management, Production and Operations Management Society, vol. 31(12), pages 4544-4557, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:popmgt:v:31:y:2022:i:4:p:1630-1644. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1937-5956 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.