IDEAS home Printed from https://ideas.repec.org/a/inm/orinte/v54y2024i5p431-454.html
   My bibliography  Save this article

Delta Coverage: The Analytics Journey to Implement a Novel Nurse Deployment Program

Author

Listed:
  • Jonathan E. Helm

    (Kelley School of Business, Indiana University, Bloomington, Indiana 47405)

  • Pengyi Shi

    (Daniels School of Business, Purdue University, West Lafayette, Indiana 47907)

  • Mary Drewes

    (Nursing Organization, Indiana University Health, Indianapolis, Indiana 46202)

  • Jacob Cecil

    (Nursing Organization, Indiana University Health, Indianapolis, Indiana 46202)

Abstract

Amidst critical levels of nurse shortages, we partnered with Indiana University Health (IUH) to pioneer a novel suite of advanced data and decision analytics to support a new model of nurse staffing. This statewide program leverages a flexible pool of resource nurses who can move between the 16 IUH hospitals located in five diverse regions and serving more than 1.4 million residents. This program breaks the mold of traditional travel and resource nurses by adding flexibility to move nurses between hospitals to dynamically respond to short-term patient census fluctuations. This paradigm shift necessitated the development of analytics to execute these interhospital transfers. Specifically, we develop analytics to create a two-week advance on-call list for travel and a 24- to 48-hour call-in decision. Our Delta Coverage Analytics Suite was launched in October 2021 as a Microsoft PowerBI application and provides an integrated solution that has supported and continues to support this new staffing approach at a statewide scale. The suite contrasts with existing nurse scheduling tools that primarily cater to single hospitals or units. It incorporates (1) a novel patient census forecast based on a deep generative model capturing complex spatial-temporal correlations and avoiding error accumulation occurring in traditional time-series models and (2) a stochastic optimization that prescribes optimal on-call and deployment decisions. The pilot, conducted from May to June 2023, produced a remarkable reduction in understaffing, with estimated annual savings of $2.5 million to IUH and over $1.5 billion on a national scale compared with the conventional solution of hiring travel nurses. As the first program of its kind, our methods establish new benchmarks for evidence-based and data-driven nurse workforce management with the potential to transform how healthcare institutions approach the national nursing shortage crisis.

Suggested Citation

  • Jonathan E. Helm & Pengyi Shi & Mary Drewes & Jacob Cecil, 2024. "Delta Coverage: The Analytics Journey to Implement a Novel Nurse Deployment Program," Interfaces, INFORMS, vol. 54(5), pages 431-454, September.
  • Handle: RePEc:inm:orinte:v:54:y:2024:i:5:p:431-454
    DOI: 10.1287/inte.2024.0140
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/inte.2024.0140
    Download Restriction: no

    File URL: https://libkey.io/10.1287/inte.2024.0140?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gah-Yi Ban & Cynthia Rudin, 2019. "The Big Data Newsvendor: Practical Insights from Machine Learning," Operations Research, INFORMS, vol. 67(1), pages 90-108, January.
    2. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kau, James B. & Keenan, Donald C., 1999. "Patterns of rational default," Regional Science and Urban Economics, Elsevier, vol. 29(6), pages 765-785, November.
    2. Camilla LandÊn, 2000. "Bond pricing in a hidden Markov model of the short rate," Finance and Stochastics, Springer, vol. 4(4), pages 371-389.
    3. Thomas Kokholm & Martin Stisen, 2015. "Joint pricing of VIX and SPX options with stochastic volatility and jump models," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 16(1), pages 27-48, January.
    4. Álvarez Echeverría Francisco & López Sarabia Pablo & Venegas Martínez Francisco, 2012. "Valuación financiera de proyectos de inversión en nuevas tecnologías con opciones reales," Contaduría y Administración, Accounting and Management, vol. 57(3), pages 115-145, julio-sep.
    5. Hisashi Nakamura & Wataru Nozawa & Akihiko Takahashi, 2009. "Macroeconomic Implications of Term Structures of Interest Rates Under Stochastic Differential Utility with Non-Unitary EIS," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 16(3), pages 231-263, September.
    6. Darren Shannon & Grigorios Fountas, 2021. "Extending the Heston Model to Forecast Motor Vehicle Collision Rates," Papers 2104.11461, arXiv.org, revised May 2021.
    7. Matsumura, Marco & Moreira, Ajax & Vicente, José, 2011. "Forecasting the yield curve with linear factor models," International Review of Financial Analysis, Elsevier, vol. 20(5), pages 237-243.
    8. Ivanova, Vesela & Puigvert Gutiérrez, Josep Maria, 2014. "Interest rate forecasts, state price densities and risk premium from Euribor options," Journal of Banking & Finance, Elsevier, vol. 48(C), pages 210-223.
    9. Lin, Bing-Huei, 1999. "Fitting the term structure of interest rates for Taiwanese government bonds," Journal of Multinational Financial Management, Elsevier, vol. 9(3-4), pages 331-352, November.
    10. Gollier, Christian, 2002. "Time Horizon and the Discount Rate," Journal of Economic Theory, Elsevier, vol. 107(2), pages 463-473, December.
    11. Henry, Olan T. & Olekalns, Nilss & Suardi, Sandy, 2007. "Testing for rate dependence and asymmetry in inflation uncertainty: Evidence from the G7 economies," Economics Letters, Elsevier, vol. 94(3), pages 383-388, March.
    12. Robert R. Bliss & Ehud I. Ronn, 1997. "Callable U.S. Treasury bonds: optimal calls, anomalies, and implied volatilities," FRB Atlanta Working Paper 97-1, Federal Reserve Bank of Atlanta.
    13. Ammann, Manuel & Kind, Axel & Wilde, Christian, 2003. "Are convertible bonds underpriced? An analysis of the French market," Journal of Banking & Finance, Elsevier, vol. 27(4), pages 635-653, April.
    14. Yi Wang & Yafei Yang & Zhaoxiang Qin & Yefei Yang & Jun Li, 2023. "A Literature Review on the Application of Digital Technology in Achieving Green Supply Chain Management," Sustainability, MDPI, vol. 15(11), pages 1-18, May.
    15. Sergio Zúñiga, 1999. "Modelos de Tasas de Interés en Chile: Una Revisión," Latin American Journal of Economics-formerly Cuadernos de Economía, Instituto de Economía. Pontificia Universidad Católica de Chile., vol. 36(108), pages 875-893.
    16. Anna Cieslak & Pavol Povala, 2016. "Information in the Term Structure of Yield Curve Volatility," Journal of Finance, American Finance Association, vol. 71(3), pages 1393-1436, June.
    17. Asai, Manabu & McAleer, Michael, 2015. "Leverage and feedback effects on multifactor Wishart stochastic volatility for option pricing," Journal of Econometrics, Elsevier, vol. 187(2), pages 436-446.
    18. Sandrine Lardic & Claire Gauthier, 2003. "Un modèle multifactoriel des spreads de crédit : estimation sur panels complets et incomplets," Économie et Prévision, Programme National Persée, vol. 159(3), pages 53-69.
    19. Xi Chen & Zachary Owen & Clark Pixton & David Simchi-Levi, 2022. "A Statistical Learning Approach to Personalization in Revenue Management," Management Science, INFORMS, vol. 68(3), pages 1923-1937, March.
    20. A. Itkin & V. Shcherbakov & A. Veygman, 2019. "New Model For Pricing Quanto Credit Default Swaps," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(03), pages 1-37, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orinte:v:54:y:2024:i:5:p:431-454. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.