IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v339y2024i1d10.1007_s10479-023-05234-4.html
   My bibliography  Save this article

Data-driven optimization models for inventory and financing decisions in online retailing platforms

Author

Listed:
  • Bingnan Yang

    (Huazhong University of Science and Technology)

  • Xianhao Xu

    (Huazhong University of Science and Technology)

  • Yeming Gong

    (Emlyon Business School)

  • Yacine Rekik

    (ESCP Business School)

Abstract

With data-driven optimization, this study investigates the sellers’ inventory replenishment and financial decisions, and lenders’ interest rate decisions in online retailing platforms. Moreover, we focus on the annual large-scale promotion, which requires massive capital in a short period. While scholars studying the data-driven inventory replenishment problem hardly consider capital-constrained sellers, these problems are important because the seller’s capital level can significantly influence the order quantity and generate different effects on inventory management. Hence, we propose two novel data-driven game-theoretic approaches (including separated and integrated methods) using machine learning and deep learning methods to optimize inventory replenishment and financial decisions for the sellers who obtain financial support from the online platform. Moreover, we propose a data-driven game-theoretic model for the online platform to optimize their interest rate considering the market potential. We explore the real retailing transaction data containing 199,390 weekly sales records. We find that the seller and lender can benefit when the seller chooses integrated machine learning and quantile regression method. However, we find that only a low capital level can motivate the seller to choose to borrow from the lender. Interestingly, our results also suggest that the lender has the motivation to build a data-driven system that helps sellers optimize inventory decisions. Our work identifies the optimal interest rate and inventory decision under the data-driven method. We propose data-driven decision support tools by evaluating the values of both the lender’s and the seller’s profit and provide new management insights on joint inventory and financing decisions.

Suggested Citation

  • Bingnan Yang & Xianhao Xu & Yeming Gong & Yacine Rekik, 2024. "Data-driven optimization models for inventory and financing decisions in online retailing platforms," Annals of Operations Research, Springer, vol. 339(1), pages 741-764, August.
  • Handle: RePEc:spr:annopr:v:339:y:2024:i:1:d:10.1007_s10479-023-05234-4
    DOI: 10.1007/s10479-023-05234-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-023-05234-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-023-05234-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:339:y:2024:i:1:d:10.1007_s10479-023-05234-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.