IDEAS home Printed from https://ideas.repec.org/r/fip/fedpwp/08-4.html
   My bibliography  Save this item

Frontiers of real-time data analysis

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Neuenkirch, Matthias & Siklos, Pierre L., 2013. "What's in a second opinion? Shadowing the ECB and the Bank of England," European Journal of Political Economy, Elsevier, vol. 32(C), pages 135-148.
  2. Adam J. Check & Anna K Nolan & Tyler C. Schipper, 2019. "Forecasting GDP Growth using Disaggregated GDP Revisions," Economics Bulletin, AccessEcon, vol. 39(4), pages 2580-2588.
  3. Kevin Lee & Nilss Olekalns & Kalvinder Shields, 2008. "Nowcasting, Business Cycle Dating and the Interpretation of New Information when Real Time Data are Available," Discussion Papers in Economics 08/17, Division of Economics, School of Business, University of Leicester.
  4. Tsuchiya, Yoichi, 2013. "Do corporate executives have accurate predictions for the economy? A directional analysis," Economic Modelling, Elsevier, vol. 30(C), pages 167-174.
  5. Carlo Altavilla & Matteo Ciccarelli, 2011. "Monetary Policy Analysis in Real-Time. Vintage combination from a real-time dataset," CSEF Working Papers 274, Centre for Studies in Economics and Finance (CSEF), University of Naples, Italy.
  6. Hecq, Alain & Jacobs, Jan P.A.M. & Stamatogiannis, Michalis P., 2019. "Testing for news and noise in non-stationary time series subject to multiple historical revisions," Journal of Macroeconomics, Elsevier, vol. 60(C), pages 396-407.
  7. Hobler, Stephan, 2022. "Multi-layered rational inattention and time-varying volatility," Journal of Economic Dynamics and Control, Elsevier, vol. 138(C).
  8. António Rua & Fátima Cardoso, 2011. "The Quarterly National Accounts in real-time: an analysis of the revisions over the last decade," Economic Bulletin and Financial Stability Report Articles and Banco de Portugal Economic Studies, Banco de Portugal, Economics and Research Department.
  9. Serena Ng & Jonathan H. Wright, 2013. "Facts and Challenges from the Great Recession for Forecasting and Macroeconomic Modeling," Journal of Economic Literature, American Economic Association, vol. 51(4), pages 1120-1154, December.
  10. István Ábel & Pierre Siklos, 2023. "Macroeconomic Risks and Monetary Policy in Central European Countries: Parallels in the Czech Republic, Hungary, and Poland," Risks, MDPI, vol. 11(11), pages 1-26, November.
  11. Christian Conrad & Karin Loch, 2015. "Anticipating Long‐Term Stock Market Volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(7), pages 1090-1114, November.
  12. Jos Jansen & Jasper de Winter, 2016. "Improving model-based near-term GDP forecasts by subjective forecasts: A real-time exercise for the G7 countries," DNB Working Papers 507, Netherlands Central Bank, Research Department.
  13. Derrill D. Watson, 2017. "The political economy of food price policy during the global food price crisis of 2006-2008," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 9(3), pages 497-509, June.
  14. repec:wrk:wrkemf:31 is not listed on IDEAS
  15. Dean Croushore, 2009. "Commentary on Estimating U.S. output growth with vintage data in a state-space framework," Review, Federal Reserve Bank of St. Louis, vol. 91(Jul), pages 371-382.
  16. Aguirre, Idoia & Vázquez, Jesús, 2018. "Inflation monitoring in real time: A comparative analysis of the Federal Reserve and the Bank of England," International Review of Economics & Finance, Elsevier, vol. 58(C), pages 200-209.
  17. Sinclair, Tara M., 2019. "Characteristics and implications of Chinese macroeconomic data revisions," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1108-1117.
  18. Bec, Frédérique & Mogliani, Matteo, 2015. "Nowcasting French GDP in real-time with surveys and “blocked” regressions: Combining forecasts or pooling information?," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1021-1042.
  19. P. Siklos, B. Lavender, 2014. "The Credit Cycle And The Business Cycle In Canada And The U.S.: Two Solitudes," LCERPA Working Papers wm0065, Laurier Centre for Economic Research and Policy Analysis.
  20. Vázquez, Jesús & Aguilar, Pablo, 2021. "Adaptive learning with term structure information," European Economic Review, Elsevier, vol. 134(C).
  21. Lise Pichette & Marie-Noëlle Robitaille, 2017. "Assessing the Business Outlook Survey Indicator Using Real-Time Data," Discussion Papers 17-5, Bank of Canada.
  22. Ana Beatriz Galvão & James Mitchell, 2019. "Measuring Data Uncertainty: An Application using the Bank of England's "Fan Charts" for Historical GDP Growth," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2019-08, Economic Statistics Centre of Excellence (ESCoE).
  23. Heij, Christiaan & van Dijk, Dick & Groenen, Patrick J.F., 2011. "Real-time macroeconomic forecasting with leading indicators: An empirical comparison," International Journal of Forecasting, Elsevier, vol. 27(2), pages 466-481.
  24. Mogliani, Matteo & Darné, Olivier & Pluyaud, Bertrand, 2017. "The new MIBA model: Real-time nowcasting of French GDP using the Banque de France's monthly business survey," Economic Modelling, Elsevier, vol. 64(C), pages 26-39.
  25. Ronald Indergand & Stefan Leist, 2014. "A Real-Time Data Set for Switzerland," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 150(IV), pages 331-352, December.
  26. Stefano Neri & Tiziano Ropele, 2012. "Imperfect Information, Real‐Time Data and Monetary Policy in the Euro Area," Economic Journal, Royal Economic Society, vol. 122(561), pages 651-674, June.
  27. Rusnák, Marek, 2016. "Nowcasting Czech GDP in real time," Economic Modelling, Elsevier, vol. 54(C), pages 26-39.
  28. Severin Bernhard, 2016. "A real-time GDP data set for Switzerland," Economic Studies 2016-09, Swiss National Bank.
  29. Barbara Rossi, 2019. "Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them," Working Papers 1162, Barcelona School of Economics.
  30. Heinisch Katja & Scheufele Rolf, 2019. "Should Forecasters Use Real-Time Data to Evaluate Leading Indicator Models for GDP Prediction? German Evidence," German Economic Review, De Gruyter, vol. 20(4), pages 170-200, December.
  31. Bragoli, Daniela, 2017. "Now-casting the Japanese economy," International Journal of Forecasting, Elsevier, vol. 33(2), pages 390-402.
  32. Chou, Jenyu & Easaw, Joshy & Minford, Patrick, 2023. "Does inattentiveness matter for DSGE modeling? An empirical investigation," Economic Modelling, Elsevier, vol. 118(C).
  33. Kerry Patterson & Hossein Hassani & Saeed Heravi & Anatoly Zhigljavsky, 2011. "Multivariate singular spectrum analysis for forecasting revisions to real-time data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(10), pages 2183-2211.
  34. Sinclair, Tara M. & Stekler, H.O., 2013. "Examining the quality of early GDP component estimates," International Journal of Forecasting, Elsevier, vol. 29(4), pages 736-750.
  35. Binz, Oliver & Mayew, William J. & Nallareddy, Suresh, 2022. "Firms’ response to macroeconomic estimation errors," Journal of Accounting and Economics, Elsevier, vol. 73(2).
  36. Bańbura, Marta & Giannone, Domenico & Modugno, Michele & Reichlin, Lucrezia, 2013. "Now-Casting and the Real-Time Data Flow," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 195-237, Elsevier.
  37. Gerhard Kempkes, 2014. "Cyclical Adjustment in Fiscal Rules: Some Evidence on Real-Time Bias for EU-15 Countries," FinanzArchiv: Public Finance Analysis, Mohr Siebeck, Tübingen, vol. 70(2), pages 278-315, June.
  38. Dean Croushore & Stephanie M. Wilshusen, 2020. "Forecasting Consumption Spending Using Credit Bureau Data," Working Papers 20-22, Federal Reserve Bank of Philadelphia.
  39. Watson, Derrill D. II, 2015. "The Political Economy of Food Price Policy: A Synthesis," 2015 Conference, August 9-14, 2015, Milan, Italy 212714, International Association of Agricultural Economists.
  40. Hännikäinen Jari, 2017. "Selection of an Estimation Window in the Presence of Data Revisions and Recent Structural Breaks," Journal of Econometric Methods, De Gruyter, vol. 6(1), pages 1-22, January.
  41. repec:wrk:wrkemf:30 is not listed on IDEAS
  42. Jacopo Cimadomo, 2016. "Real-Time Data And Fiscal Policy Analysis: A Survey Of The Literature," Journal of Economic Surveys, Wiley Blackwell, vol. 30(2), pages 302-326, April.
  43. Orphanides, Athanasios & Wei, Min, 2012. "Evolving macroeconomic perceptions and the term structure of interest rates," Journal of Economic Dynamics and Control, Elsevier, vol. 36(2), pages 239-254.
  44. G. Farrell, 2016. "Countercyclical Capital Buffers and Real-Time Credit-To-GDP Gap Estimates: A South African Perspective," Studies in Economics and Econometrics, Taylor & Francis Journals, vol. 40(1), pages 1-20, April.
  45. Vázquez, Jesús & María-Dolores, Ramón & Londoño, Juan M., 2012. "The Effect of Data Revisions on the Basic New Keynesian Model," International Review of Economics & Finance, Elsevier, vol. 24(C), pages 235-249.
  46. Jan Capek, 2014. "Historical Analysis of Monetary Policy Reaction Functions: Do Real-Time Data Matter?," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 64(6), pages 457-475, December.
  47. Steven P. Cassou & C. Patrick Scott & Jesús Vázquez, 2018. "Optimal monetary policy revisited: does considering US real-time data change things?," Applied Economics, Taylor & Francis Journals, vol. 50(57), pages 6203-6219, December.
  48. Amstad, Marlene & Fischer, Andreas M., 2010. "Monthly pass-through ratios," Journal of Economic Dynamics and Control, Elsevier, vol. 34(7), pages 1202-1213, July.
  49. Jenyu Chou & Yifei Cao & Patrick Minford, 2023. "Evaluation and indirect inference estimation of inattentive features in a New Keynesian framework," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(3), pages 530-542, April.
  50. Fang, Tong & Lee, Tae-Hwy & Su, Zhi, 2020. "Predicting the long-term stock market volatility: A GARCH-MIDAS model with variable selection," Journal of Empirical Finance, Elsevier, vol. 58(C), pages 36-49.
  51. Joao Tovar Jalles, 2015. "How Quickly is News Incorporated in Fiscal Forecasts?," Economics Bulletin, AccessEcon, vol. 35(4), pages 2802-2812.
  52. Gerit Vogt, 2009. "Konjunkturprognose in Deutschland. Ein Beitrag zur Prognose der gesamtwirtschaftlichen Entwicklung auf Bundes- und Länderebene," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 36.
  53. Hecq, A.W. & Götz, T.B. & Urbain, J.R.Y.J., 2012. "Real-time forecast density combinations (forecasting US GDP growth using mixed-frequency data)," Research Memorandum 021, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
  54. Casares, Miguel & Vázquez, Jesús, 2016. "Data Revisions In The Estimation Of Dsge Models," Macroeconomic Dynamics, Cambridge University Press, vol. 20(7), pages 1683-1716, October.
  55. van den Hauwe, Sjoerd & Paap, Richard & van Dijk, Dick, 2013. "Bayesian forecasting of federal funds target rate decisions," Journal of Macroeconomics, Elsevier, vol. 37(C), pages 19-40.
  56. Julien Champagne & Guillaume Poulin-Bellisle & Rodrigo Sekkel, 2018. "Evaluating the Bank of Canada Staff Economic Projections Using a New Database of Real-Time Data and Forecasts," Staff Working Papers 18-52, Bank of Canada.
  57. Aastveit, Knut Are & Trovik, Tørres, 2014. "Estimating the output gap in real time: A factor model approach," The Quarterly Review of Economics and Finance, Elsevier, vol. 54(2), pages 180-193.
  58. Kevin Lee & James Morley & Kalvinder Shields & Madeleine Sui-Lay Tan, 2018. "The Australian real-time fiscal database: An overview and an illustration of its use in analysing planned and realised fiscal policies," Discussion Papers 2018/11, University of Nottingham, Centre for Finance, Credit and Macroeconomics (CFCM).
  59. Robert Lehmann, 2024. "A real-time regional accounts database for Germany with applications to GDP revisions and nowcasting," Empirical Economics, Springer, vol. 67(2), pages 817-838, August.
  60. Poza, Carlos & Monge, Manuel, 2020. "A real time leading economic indicator based on text mining for the Spanish economy. Fractional cointegration VAR and Continuous Wavelet Transform analysis," International Economics, Elsevier, vol. 163(C), pages 163-175.
  61. Jari Hännikäinen, 2014. "Multi-step forecasting in the presence of breaks," Working Papers 1494, Tampere University, Faculty of Management and Business, Economics.
  62. M. Mogliani & T. Ferrière, 2016. "Rationality of announcements, business cycle asymmetry, and predictability of revisions. The case of French GDP," Working papers 600, Banque de France.
  63. Marie Bessec & Othman Bouabdallah, 2015. "Forecasting GDP over the Business Cycle in a Multi-Frequency and Data-Rich Environment," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 77(3), pages 360-384, June.
  64. Barend Abeln & Jan P. A. M. Jacobs, 2023. "CAMPLET: Seasonal Adjustment Without Revisions," SpringerBriefs in Economics, in: Seasonal Adjustment Without Revisions, chapter 0, pages 7-29, Springer.
  65. Warne, Anders, 2023. "DSGE model forecasting: rational expectations vs. adaptive learning," Working Paper Series 2768, European Central Bank.
  66. Yutaka Kurihara, 2016. "Can the Disparity between GDP and GDP Forecast Cause Economic Instability? The Recent Japanese Case," International Journal of Economics and Financial Research, Academic Research Publishing Group, vol. 2(8), pages 155-160, 08-2016.
  67. Hännikäinen, Jari, 2017. "When does the yield curve contain predictive power? Evidence from a data-rich environment," International Journal of Forecasting, Elsevier, vol. 33(4), pages 1044-1064.
  68. Daniel P. Murphy, 2013. "How does government spending stimulate consumption?," Globalization Institute Working Papers 157, Federal Reserve Bank of Dallas.
  69. repec:wrk:wrkemf:11 is not listed on IDEAS
  70. Galvão, Ana Beatriz, 2017. "Data revisions and DSGE models," Journal of Econometrics, Elsevier, vol. 196(1), pages 215-232.
  71. Smets, Frank & Warne, Anders & Wouters, Rafael, 2014. "Professional forecasters and real-time forecasting with a DSGE model," International Journal of Forecasting, Elsevier, vol. 30(4), pages 981-995.
  72. repec:wrk:wrkemf:35 is not listed on IDEAS
  73. Richard Jong-A-Pin & Jan-Egbert Sturm & Jakob de Haan & Jakob de Haan, 2012. "Using Real-Time Data to Test for Political Budget Cycles," CESifo Working Paper Series 3939, CESifo.
  74. Michael Pedersen, 2013. "Extracting GDP signals from the monthly indicator of economic activity: Evidence from Chilean real-time data," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2013(1), pages 1-16.
  75. Andrew C. Chang & Phillip Li, 2018. "Measurement Error In Macroeconomic Data And Economics Research: Data Revisions, Gross Domestic Product, And Gross Domestic Income," Economic Inquiry, Western Economic Association International, vol. 56(3), pages 1846-1869, July.
  76. Adriana Fernandez & Evan F. Koenig & Alex Nikolsko-Rzhevskyy, 2011. "A real-time historical database for the OECD," Globalization Institute Working Papers 96, Federal Reserve Bank of Dallas.
  77. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
    • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
  78. Thomas Gilbert & Chiara Scotti & Georg H. Strasser & Clara Vega, 2015. "Is the Intrinsic Value of Macroeconomic News Announcements Related to Their Asset Price Impact?," Boston College Working Papers in Economics 874, Boston College Department of Economics, revised 23 Apr 2015.
  79. Christiane Baumeister & Lutz Kilian, 2014. "What Central Bankers Need To Know About Forecasting Oil Prices," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 55(3), pages 869-889, August.
  80. repec:wrk:wrkemf:24 is not listed on IDEAS
  81. Jalles, João Tovar, 2017. "On the rationality and efficiency of inflation forecasts: Evidence from advanced and emerging market economies," Research in International Business and Finance, Elsevier, vol. 40(C), pages 175-189.
  82. Kevin Lee & James Morley & Kian Ong & Kalvinder Shields, 2018. "Measuring the fiscal multiplier when plans take time to implement," Discussion Papers 2018/10, University of Nottingham, Centre for Finance, Credit and Macroeconomics (CFCM).
  83. Vasconcelos de Deus, Joseph David Barroso & de Mendonça, Helder Ferreira, 2017. "Fiscal forecasting performance in an emerging economy: An empirical assessment of Brazil," Economic Systems, Elsevier, vol. 41(3), pages 408-419.
  84. Mr. Serhan Cevik & João Tovar Jalles, 2020. "This Changes Everything: Climate Shocks and Sovereign Bonds," IMF Working Papers 2020/079, International Monetary Fund.
  85. Roman Horvath, 2012. "Do Confidence Indicators Help Predict Economic Activity? The Case of the Czech Republic," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 62(5), pages 398-412, November.
  86. Clements, Michael P. & Galvão, Ana Beatriz, 2017. "Model and survey estimates of the term structure of US macroeconomic uncertainty," International Journal of Forecasting, Elsevier, vol. 33(3), pages 591-604.
  87. Camino-Mogro, Segundo, 2020. "Turbulence in startups: Effect of COVID-19 lockdown on creation of new firms and its capital," MPRA Paper 104502, University Library of Munich, Germany.
  88. Zhang, Bo & Nguyen, Bao H., 2020. "Real-time forecasting of the Australian macroeconomy using Bayesian VARs," Working Papers 2020-12, University of Tasmania, Tasmanian School of Business and Economics.
  89. Juan Bógalo & Pilar Poncela & Eva Senra, 2021. "Circulant Singular Spectrum Analysis to Monitor the State of the Economy in Real Time," Mathematics, MDPI, vol. 9(11), pages 1-17, May.
  90. Philip ME Garboden, 2019. "Sources and Types of Big Data for Macroeconomic Forecasting," Working Papers 2019-3, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
  91. Jones, Jacob T. & Sinclair, Tara M. & Stekler, Herman O., 2020. "A textual analysis of Bank of England growth forecasts," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1478-1487.
  92. Matthieu Verstraete & Lena Suchanek, 2018. "Understanding Monetary Policy and its Effects: Evidence from Canadian Firms Using the Business Outlook Survey," CESifo Working Paper Series 7221, CESifo.
  93. Dovern, Jonas & Jannsen, Nils, 2017. "Systematic errors in growth expectations over the business cycle," International Journal of Forecasting, Elsevier, vol. 33(4), pages 760-769.
  94. Givens, Gregory E. & Salemi, Michael K., 2015. "Inferring monetary policy objectives with a partially observed state," Journal of Economic Dynamics and Control, Elsevier, vol. 52(C), pages 190-208.
  95. Onur Ince & Tanya Molodtsova, 2013. "Real-Time Out-of-Sample Exchange Rate Predictability," Working Papers 13-03, Department of Economics, Appalachian State University.
  96. Tim Meyer, 2019. "On the Directional Accuracy of United States Housing Starts Forecasts: Evidence from Survey Data," The Journal of Real Estate Finance and Economics, Springer, vol. 58(3), pages 457-488, April.
  97. Loretta J. Mester, 2016. "Acknowledging Uncertainty, 10-07-2016; Shadow Open Market Committee Fall Meeting, New York, NY," Speech 77, Federal Reserve Bank of Cleveland.
  98. Heinisch, Katja, 2024. "Step by step - A quarterly evaluation of EU Commission's GDP forecasts," IWH Discussion Papers 22/2024, Halle Institute for Economic Research (IWH).
  99. Strohsal, Till & Wolf, Elias, 2020. "Data revisions to German national accounts: Are initial releases good nowcasts?," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1252-1259.
  100. Fumio Hayashi & Yuta Tachi, 2023. "Nowcasting Japan’s GDP," Empirical Economics, Springer, vol. 64(4), pages 1699-1735, April.
  101. Ana Beatriz Galvão & James Mitchell & Johnny Runge, 2019. "Communicating Data Uncertainty: Experimental Evidence for U.K. GDP," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2019-20, Economic Statistics Centre of Excellence (ESCoE).
  102. Michael P. Clements, 2017. "Assessing Macro Uncertainty in Real-Time When Data Are Subject To Revision," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(3), pages 420-433, July.
  103. Peter A.G. van Bergeijk, 2017. "Making Data Measurement Errors Transparent: The Case of the IMF," World Economics, World Economics, 1 Ivory Square, Plantation Wharf, London, United Kingdom, SW11 3UE, vol. 18(3), pages 133-154, July.
  104. Y. Tsuchiya, 2014. "A directional evaluation of corporate executives' exchange rate forecasts," Applied Economics, Taylor & Francis Journals, vol. 46(1), pages 95-101, January.
  105. Michael P. Clements, 2014. "Anticipating Early Data Revisions to US GDP and the Effects of Releases on Equity Markets," ICMA Centre Discussion Papers in Finance icma-dp2014-06, Henley Business School, University of Reading.
  106. Kaufmann, Daniel & Scheufele, Rolf, 2017. "Business tendency surveys and macroeconomic fluctuations," International Journal of Forecasting, Elsevier, vol. 33(4), pages 878-893.
  107. Marek RUSNAK, 2013. "Revisions to the Czech National Accounts: Properties and Predictability," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 63(3), pages 244-261, July.
  108. Daniel Murphy, 2015. "How Can Government Spending Stimulate Consumption?," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 18(3), pages 551-574, July.
  109. Bob Krebs, 2019. "Revisions to Quarterly National Accounts data in Luxembourg," BCL working papers 136, Central Bank of Luxembourg.
  110. Jacobs, Jan P.A.M. & van Norden, Simon, 2016. "Why are initial estimates of productivity growth so unreliable?," Journal of Macroeconomics, Elsevier, vol. 47(PB), pages 200-213.
  111. Xueting Yu & Yuhan Zhu & Guangming Lv, 2020. "Analysis of the Impact of China’s GDP Data Revision on Monetary Policy from the Perspective of Uncertainty," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 56(6), pages 1251-1274, May.
  112. Croushore, Dean & van Norden, Simon, 2019. "Fiscal Surprises at the FOMC," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1583-1595.
  113. Bianconi, Marcelo & Hua, Xiaxin & Tan, Chih Ming, 2015. "Determinants of systemic risk and information dissemination," International Review of Economics & Finance, Elsevier, vol. 38(C), pages 352-368.
  114. Ley, Eduardo & Misch, Florian, 2013. "Real-time macro monitoring and fiscal policy," Policy Research Working Paper Series 6303, The World Bank.
  115. Baetje, Fabian & Friedrici, Karola, 2016. "Does cross-sectional forecast dispersion proxy for macroeconomic uncertainty? New empirical evidence," Economics Letters, Elsevier, vol. 143(C), pages 38-43.
  116. de Haan Jakob, 2019. "Some Reflections on the Political Economy of Monetary Policy," Review of Economics, De Gruyter, vol. 70(3), pages 213-228, December.
  117. Bovi, Maurizio, 2013. "Are the representative agent’s beliefs based on efficient econometric models?," Journal of Economic Dynamics and Control, Elsevier, vol. 37(3), pages 633-648.
  118. Andrew J. Patton & Tarun Ramadorai & Michael Streatfield, 2015. "Change You Can Believe In? Hedge Fund Data Revisions," Journal of Finance, American Finance Association, vol. 70(3), pages 963-999, June.
  119. Christiane Baumeister & Lutz Kilian, 2011. "Real-Time Forecasts of the Real Price of Oil," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(2), pages 326-336, September.
  120. Gootjes, Bram & de Haan, Jakob, 2022. "Procyclicality of fiscal policy in European Union countries," Journal of International Money and Finance, Elsevier, vol. 120(C).
  121. Götz, Thomas B. & Hecq, Alain & Urbain, Jean-Pierre, 2016. "Combining forecasts from successive data vintages: An application to U.S. growth," International Journal of Forecasting, Elsevier, vol. 32(1), pages 61-74.
  122. Gregory E. Givens, 2017. "Do Data Revisions Matter for DSGE Estimation?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 49(6), pages 1385-1407, September.
  123. van Bergeijk, P.A.G., 2017. "Measurement error of global production," ISS Working Papers - General Series 632, International Institute of Social Studies of Erasmus University Rotterdam (ISS), The Hague.
  124. Matthieu Verstraete & Lena Suchanek, 2017. "Understanding Monetary Policy and its Effects: Evidence from Canadian Firms Using the Business Outlook Survey," Staff Working Papers 17-24, Bank of Canada.
  125. Michael Clements, 2016. "Are Macro-Forecasters Essentially The Same? An Analysis of Disagreement, Accuracy and Efficiency," ICMA Centre Discussion Papers in Finance icma-dp2016-08, Henley Business School, University of Reading.
  126. Smets, Frank & Warne, Anders & Wouters, Raf, 2013. "Professional forecasters and the real-time forecasting performance of an estimated new keynesian model for the euro area," Working Paper Series 1571, European Central Bank.
  127. Heinisch, Katja, 2016. "A real-time analysis on the importance of hard and soft data for nowcasting German GDP," VfS Annual Conference 2016 (Augsburg): Demographic Change 145864, Verein für Socialpolitik / German Economic Association.
  128. Galimberti, Jaqueson K. & Moura, Marcelo L., 2016. "Improving the reliability of real-time output gap estimates using survey forecasts," International Journal of Forecasting, Elsevier, vol. 32(2), pages 358-373.
  129. Döpke, Jörg & Fritsche, Ulrich & Pierdzioch, Christian, 2017. "Predicting recessions with boosted regression trees," International Journal of Forecasting, Elsevier, vol. 33(4), pages 745-759.
  130. Caroline Flodberg & Pär Österholm, 2017. "A Statistical Anaysis of Revisions in Swedish National Accounts Data," Finnish Economic Papers, Finnish Economic Association, vol. 28(1), pages 10-33, Autumn.
  131. Amador-Torres, J. Sebastián, 2017. "Finance-neutral potential output: An evaluation in an emerging market monetary policy context," Economic Systems, Elsevier, vol. 41(3), pages 389-407.
  132. Monge, Manuel & Claudio-Quiroga, Gloria & Poza, Carlos, 2024. "Chinese economic behavior in times of covid-19. A new leading economic indicator based on Google trends," International Economics, Elsevier, vol. 177(C).
  133. Paulina Ziembińska, 2021. "Quality of Tests of Expectation Formation for Revised Data," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 13(4), pages 405-453, December.
  134. Hauzenberger, Niko & Huber, Florian & Klieber, Karin, 2023. "Real-time inflation forecasting using non-linear dimension reduction techniques," International Journal of Forecasting, Elsevier, vol. 39(2), pages 901-921.
  135. Liebermann, Joelle, 2012. "Real-time forecasting in a data-rich environment," MPRA Paper 39452, University Library of Munich, Germany.
  136. Santiago Pinto & Pierre-Daniel G. Sarte & Sonya Ravindranath Waddell, 2015. "Monitoring Economic Activity in Real Time Using Diffusion Indices: Evidence from the Fifth District," Economic Quarterly, Federal Reserve Bank of Richmond, issue 4Q, pages 275-301.
  137. Wang, Yudong & Liu, Li & Wu, Chongfeng, 2017. "Forecasting the real prices of crude oil using forecast combinations over time-varying parameter models," Energy Economics, Elsevier, vol. 66(C), pages 337-348.
  138. Borup, Daniel & Schütte, Erik Christian Montes, 2022. "Asset pricing with data revisions," Journal of Financial Markets, Elsevier, vol. 59(PB).
  139. Emilia Tomczyk, 2013. "End of sample vs. real time data: perspectives for analysis of expectations," Working Papers 68, Department of Applied Econometrics, Warsaw School of Economics.
  140. Weigand Roland & Wanger Susanne & Zapf Ines, 2018. "Factor Structural Time Series Models for Official Statistics with an Application to Hours Worked in Germany," Journal of Official Statistics, Sciendo, vol. 34(1), pages 265-301, March.
  141. Chrystalleni Aristidou & Kevin Lee & Kalvinder Shields, 2015. "Real-Time Data should be used in Forecasting Output Growth and Recessionary Events in the US," Discussion Papers 2015/13, University of Nottingham, Centre for Finance, Credit and Macroeconomics (CFCM).
  142. Watson, Derrill D. II, 2015. "The Political Economy of Food Price Policy: A Synthesis," 2015 Conference, August 9-14, 2015, Milan, Italy 212714, International Association of Agricultural Economists.
  143. Kishor, N. Kundan, 2009. "Data Revisions in India and its Implications for Monetary Policy," MPRA Paper 16099, University Library of Munich, Germany.
  144. Kempkes, Gerhard, 2012. "Cyclical adjustment in fiscal rules: Some evidence on real-time bias for EU-15 countries," Discussion Papers 15/2012, Deutsche Bundesbank.
  145. Elena Andreou & Andros Kourtellos, 2015. "The State and the Future of Cyprus Macroeconomic Forecasting," Cyprus Economic Policy Review, University of Cyprus, Economics Research Centre, vol. 9(1), pages 73-90, June.
  146. Bluhm, Marcel, 2015. "Investigating the monetary policy of central banks with assessment indicators," European Journal of Political Economy, Elsevier, vol. 38(C), pages 181-196.
  147. Funashima, Yoshito & Iizuka, Nobuo & Ohtsuka, Yoshihiro, 2020. "GDP announcements and stock prices," Journal of Economics and Business, Elsevier, vol. 108(C).
  148. Martin Slanicay & Jan Čapek & Miroslav Hloušek, 2016. "Some Notes On Problematic Issues In Dsge Models," Economic Annals, Faculty of Economics and Business, University of Belgrade, vol. 61(210), pages 79-100, July - Se.
  149. Binswanger, Johannes & Oechslin, Manuel, 2020. "Better statistics, better economic policies?," European Economic Review, Elsevier, vol. 130(C).
  150. Peter McAdam & Anders Warne, 2024. "Density forecast combinations: The real‐time dimension," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(5), pages 1153-1172, August.
  151. Giovannelli, Alessandro & Pericoli, Filippo Maria, 2020. "Are GDP forecasts optimal? Evidence on European countries," International Journal of Forecasting, Elsevier, vol. 36(3), pages 963-973.
  152. McAdam, Peter & Warne, Anders, 2019. "Euro area real-time density forecasting with financial or labor market frictions," International Journal of Forecasting, Elsevier, vol. 35(2), pages 580-600.
  153. Michele Berardi & Jaqueson K. Galimberti, 2012. "On the plausibility of adaptive learning in macroeconomics: A puzzling conflict in the choice of the representative algorithm," Centre for Growth and Business Cycle Research Discussion Paper Series 177, Economics, The University of Manchester.
  154. Dean Croushore & Keith Sill, 2014. "Analyzing data revisions with a dynamic stochastic general equilibrium model," Working Papers 14-29, Federal Reserve Bank of Philadelphia.
  155. Pan, Zhiyuan & Wang, Qing & Wang, Yudong & Yang, Li, 2018. "Forecasting U.S. real GDP using oil prices: A time-varying parameter MIDAS model," Energy Economics, Elsevier, vol. 72(C), pages 177-187.
  156. Qiu, Yajie & Deschamps, Bruno & Liu, Xiaoquan, 2024. "Uncertainty and macroeconomic forecasts: Evidence from survey data," Journal of Economic Behavior & Organization, Elsevier, vol. 224(C), pages 463-480.
  157. Bhatt, Vipul & Kishor, Kundan & Marfatia, Hardik, 2017. "Estimating excess sensitivity and habit persistence in consumption using Greenbook forecast as an instrument," MPRA Paper 79748, University Library of Munich, Germany.
  158. Denis Shibitov & Mariam Mamedli, 2021. "Forecasting Russian Cpi With Data Vintages And Machine Learning Techniques," Bank of Russia Working Paper Series wps70, Bank of Russia.
  159. Pierre-Daniel G. Sarte, 2010. "Learning about informational rigidities from sectoral data and diffusion indices," Working Paper 10-09, Federal Reserve Bank of Richmond.
  160. Jaqueson K. Galimberti & Marcelo L. Moura, 2011. "Improving the reliability of real-time Hodrick-Prescott filtering using survey forecasts," Centre for Growth and Business Cycle Research Discussion Paper Series 159, Economics, The University of Manchester.
  161. Eva A. Arnold, 2013. "The Role of Data Revisions and Disagreement in Professional Forecasts," Macroeconomics and Finance Series 201303, University of Hamburg, Department of Socioeconomics.
  162. Asimakopoulos, Stylianos & Lalik, Magdalena & Paredes, Joan & Salvado García, José, 2023. "GDP revisions are not cool: the impact of statistical agencies’ trade-off," Working Paper Series 2857, European Central Bank.
  163. Strohsal, Till & Wolf, Elias, 2019. "Data revisions to German national accounts: Are initial releases good nowcasts?," Discussion Papers 2019/11, Free University Berlin, School of Business & Economics.
  164. De Jong, Jasper F.M. & Gilbert, Niels D., 2020. "Fiscal discipline in EMU? Testing the effectiveness of the Excessive Deficit Procedure," European Journal of Political Economy, Elsevier, vol. 61(C).
  165. Dieter Brümmerhoff & Michael Grömling, 2013. "Ökonomische Auswirkungen von VGR-Revisionen," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 6(3), pages 133-148, March.
  166. Matthieu Lemoine & Gian Luigi Mazzi & Paola Monperrus-Veroni & Frédéric Reynes, 2010. "A new production function estimate of the euro area output gap This paper is based on a report for Eurostat: 'Real time estimation of potential output, output gap, NAIRU and Phillips curve for Euro-zo," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 29-53.
  167. Smith Paul, 2016. "Nowcasting UK GDP during the depression," Working Papers 1606, University of Strathclyde Business School, Department of Economics.
  168. Jan P.A.M. Jacobs & Samad Sarferaz & Simon van Norden & Jan-Egbert Sturm, 2013. "Modeling Multivariate Data Revisions," CIRANO Working Papers 2013s-44, CIRANO.
  169. Tara M. Sinclair & H.O. Stekler, 2011. "Differences in Early GDP Component Estimates Between Recession and Expansion," Working Papers 2011-05, The George Washington University, Institute for International Economic Policy.
  170. Pablo Aguilar & Jesús Vázquez, 2018. "Term structure and real-time learning," Working Papers 1803, Banco de España.
  171. Charles F. Manski, 2014. "Communicating Uncertainty in Official Economic Statistics," NBER Working Papers 20098, National Bureau of Economic Research, Inc.
  172. Dean Croushore, 2012. "Forecast bias in two dimensions," Working Papers 12-9, Federal Reserve Bank of Philadelphia.
  173. repec:dgr:rugsom:12010-eef is not listed on IDEAS
  174. Vipul Bhatt & N. Kundan Kishor & Hardik Marfatia, 2020. "Estimating Excess Sensitivity and Habit Persistence in Consumption Using Greenbook Forecasts," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 82(2), pages 257-284, April.
  175. De Jong, Jasper F.M. & Gilbert, Niels D., 2020. "Fiscal discipline in EMU? Testing the effectiveness of the Excessive Deficit Procedure," European Journal of Political Economy, Elsevier, vol. 61(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.