IDEAS home Printed from https://ideas.repec.org/r/eee/rensus/v55y2016icp467-481.html
   My bibliography  Save this item

Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Bong, Jang Tyng & Loy, Adrian Chun Minh & Chin, Bridgid Lai Fui & Lam, Man Kee & Tang, Daniel Kuok Ho & Lim, Huei Yeong & Chai, Yee Ho & Yusup, Suzana, 2020. "Artificial neural network approach for co-pyrolysis of Chlorella vulgaris and peanut shell binary mixtures using microalgae ash catalyst," Energy, Elsevier, vol. 207(C).
  2. Kung, Chih-Chun & Mu, Jianhong E., 2019. "Prospect of China's renewable energy development from pyrolysis and biochar applications under climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
  3. Li, Shuangjun & Yuan, Xiangzhou & Deng, Shuai & Zhao, Li & Lee, Ki Bong, 2021. "A review on biomass-derived CO2 adsorption capture: Adsorbent, adsorber, adsorption, and advice," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
  4. Zuhal Akyürek, 2019. "Sustainable Valorization of Animal Manure and Recycled Polyester: Co-pyrolysis Synergy," Sustainability, MDPI, vol. 11(8), pages 1-14, April.
  5. Jana Růžičková & Marek Kucbel & Helena Raclavská & Barbora Švédová & Konstantin Raclavský & Michal Šafář & Pavel Kantor, 2019. "Chemical and Mineralogical Composition of Soot and Ash from the Combustion of Peat Briquettes in Household Boilers," Energies, MDPI, vol. 12(19), pages 1-21, October.
  6. Al-Rumaihi, Aisha & Shahbaz, Muhammad & Mckay, Gordon & Mackey, Hamish & Al-Ansari, Tareq, 2022. "A review of pyrolysis technologies and feedstock: A blending approach for plastic and biomass towards optimum biochar yield," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
  7. Song, Jinghui & Wang, Ying & Zhang, Siqi & Song, Yanling & Xue, Shengrong & Liu, Le & Lvy, Xingang & Wang, Xiaojiao & Yang, Gaihe, 2021. "Coupling biochar with anaerobic digestion in a circular economy perspective: A promising way to promote sustainable energy, environment and agriculture development in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
  8. Hong, Ziyu & Zhong, Fei & Niu, Wenjuan & Zhang, Kai & Su, Jing & Liu, Jiazheng & Li, Lijie & Wu, Fengrui, 2020. "Effects of temperature and particle size on the compositions, energy conversions and structural characteristics of pyrolysis products from different crop residues," Energy, Elsevier, vol. 190(C).
  9. Onwuemezie, Linus, 2024. "Rural development through solar and pyrolysis systems: Towards energy sustainability," Renewable Energy, Elsevier, vol. 237(PA).
  10. Gouws, S.M. & Carrier, M. & Bunt, J.R. & Neomagus, H.W.J.P., 2021. "Co-pyrolysis of coal and raw/torrefied biomass: A review on chemistry, kinetics and implementation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
  11. Tayibi, S. & Monlau, F. & Bargaz, A. & Jimenez, R. & Barakat, A., 2021. "Synergy of anaerobic digestion and pyrolysis processes for sustainable waste management: A critical review and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
  12. Chang, Boon Peng & Rodriguez-Uribe, Arturo & Mohanty, Amar K. & Misra, Manjusri, 2021. "A comprehensive review of renewable and sustainable biosourced carbon through pyrolysis in biocomposites uses: Current development and future opportunity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
  13. Lim, Jackson Hwa Keen & Gan, Yong Yang & Ong, Hwai Chyuan & Lau, Beng Fye & Chen, Wei-Hsin & Chong, Cheng Tung & Ling, Tau Chuan & Klemeš, Jiří Jaromír, 2021. "Utilization of microalgae for bio-jet fuel production in the aviation sector: Challenges and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
  14. Hongyu Zhao & Xiaona Luo & Haijiao Zhang & Nannan Sun & Wei Wei & Yuhan Sun, 2018. "Carbon†based adsorbents for post†combustion capture: a review," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(1), pages 11-36, February.
  15. Minh Trung Dao & T. T. Tram Nguyen & X. Du Nguyen & D. Duong La & D. Duc Nguyen & S. W. Chang & W. J. Chung & Van Khanh Nguyen, 2020. "Toxic Metal Adsorption from Aqueous Solution by Activated Biochars Produced from Macadamia Nutshell Waste," Sustainability, MDPI, vol. 12(19), pages 1-11, September.
  16. Primaz, Carmem T. & Ribes-Greus, Amparo & Jacques, Rosângela A., 2021. "Valorization of cotton residues for production of bio-oil and engineered biochar," Energy, Elsevier, vol. 235(C).
  17. Khodaei, Hassan & Olson, Chris & Nikrityuk, Petr, 2019. "Numerical investigations of the impact of inflow conditions on characteristics of a large-scale pyrolysis unit," Energy, Elsevier, vol. 169(C), pages 1101-1111.
  18. Li, Jie & Pan, Lanjia & Suvarna, Manu & Tong, Yen Wah & Wang, Xiaonan, 2020. "Fuel properties of hydrochar and pyrochar: Prediction and exploration with machine learning," Applied Energy, Elsevier, vol. 269(C).
  19. Liu, Zhongzhe & Singer, Simcha & Tong, Yiran & Kimbell, Lee & Anderson, Erik & Hughes, Matthew & Zitomer, Daniel & McNamara, Patrick, 2018. "Characteristics and applications of biochars derived from wastewater solids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 650-664.
  20. Yuan, Xiangzhou & Wang, Junyao & Deng, Shuai & Suvarna, Manu & Wang, Xiaonan & Zhang, Wei & Hamilton, Sara Triana & Alahmed, Ammar & Jamal, Aqil & Park, Ah-Hyung Alissa & Bi, Xiaotao & Ok, Yong Sik, 2022. "Recent advancements in sustainable upcycling of solid waste into porous carbons for carbon dioxide capture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
  21. Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.
  22. Han, Lanfang & Sun, Haoran & Sun, Ke & Yang, Yan & Fang, Liping & Xing, Baoshan, 2021. "Effect of Fe and Al ions on the production of biochar from agricultural biomass: Properties, stability and adsorption efficiency of biochar," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
  23. Qin, Fanzhi & Zhang, Chen & Zeng, Guangming & Huang, Danlian & Tan, Xiaofei & Duan, Abing, 2022. "Lignocellulosic biomass carbonization for biochar production and characterization of biochar reactivity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
  24. Yang, Xiaoxia & Tian, Sicong & Kan, Tao & Zhu, Yuxiang & Xu, Honghui & Strezov, Vladimir & Nelson, Peter & Jiang, Yijiao, 2019. "Sorption-enhanced thermochemical conversion of sewage sludge to syngas with intensified carbon utilization," Applied Energy, Elsevier, vol. 254(C).
  25. Lithnes Kalaivani Palniandy & Li Wan Yoon & Wai Yin Wong & Siek-Ting Yong & Ming Meng Pang, 2019. "Application of Biochar Derived from Different Types of Biomass and Treatment Methods as a Fuel Source for Direct Carbon Fuel Cells," Energies, MDPI, vol. 12(13), pages 1-15, June.
  26. Kumar N, Sasi & Grekov, Denys & Pré, Pascaline & Alappat, Babu J., 2020. "Microwave mode of heating in the preparation of porous carbon materials for adsorption and energy storage applications – An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
  27. Wan Adibah Wan Mahari & Nur Fatihah Zainuddin & Wan Mohd Norsani Wan Nik & Cheng Tung Chong & Su Shiung Lam, 2016. "Pyrolysis Recovery of Waste Shipping Oil Using Microwave Heating," Energies, MDPI, vol. 9(10), pages 1, September.
  28. Baghel, Paramjeet & Sakhiya, Anil Kumar & Kaushal, Priyanka, 2022. "Influence of temperature on slow pyrolysis of Prosopis Juliflora: An experimental and thermodynamic approach," Renewable Energy, Elsevier, vol. 185(C), pages 538-551.
  29. Anand, Abhijeet & Kumar, Vivek & Kaushal, Priyanka, 2022. "Biochar and its twin benefits: Crop residue management and climate change mitigation in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
  30. Isah Yakub Mohammed & Feroz Kabir Kazi & Suzana Yusup & Peter Adeniyi Alaba & Yahaya Muhammad Sani & Yousif Abdalla Abakr, 2016. "Catalytic Intermediate Pyrolysis of Napier Grass in a Fixed Bed Reactor with ZSM-5, HZSM-5 and Zinc-Exchanged Zeolite-A as the Catalyst," Energies, MDPI, vol. 9(4), pages 1, March.
  31. Mostafa, Mohamed E. & Hu, Song & Wang, Yi & Su, Sheng & Hu, Xun & Elsayed, Saad A. & Xiang, Jun, 2019. "The significance of pelletization operating conditions: An analysis of physical and mechanical characteristics as well as energy consumption of biomass pellets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 332-348.
  32. Li, Longzhi & Yang, Zhijuan & Qin, Xiaomin & Chen, Jian & Yan, Keshuo & Zou, Guifu & Peng, Zhuoyan & Wang, Fumao & Song, Zhanlong & Ma, Chunyuan, 2019. "Toluene microwave-assisted reforming with CO2 or a mixed agent of CO2-H2O on Fe-doped activated biochar," Energy, Elsevier, vol. 177(C), pages 358-366.
  33. Zhang, Pengyan & Wang, Maodong & Yu, Lianyu & Xu, Jiatun & Cai, Huanjie, 2024. "Optimization of water and nitrogen management in wheat cultivation affected by biochar application − Insights into resource utilization and economic benefits," Agricultural Water Management, Elsevier, vol. 304(C).
  34. Munir, M.T. & Mohaddespour, Ahmad & Nasr, A.T. & Carter, Susan, 2021. "Municipal solid waste-to-energy processing for a circular economy in New Zealand," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
  35. Wan Mahari, Wan Adibah & Kee, Seng Hon & Foong, Shin Ying & Amelia, Tan Suet May & Bhubalan, Kesaven & Man, Mustafa & Yang, YaFeng & Ong, Hwai Chyuan & Vithanage, Meththika & Lam, Su Shiung & Sonne, C, 2022. "Generating alternative fuel and bioplastics from medical plastic waste and waste frying oil using microwave co-pyrolysis combined with microbial fermentation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
  36. Ng, Wei Cheng & You, Siming & Ling, Ran & Gin, Karina Yew-Hoong & Dai, Yanjun & Wang, Chi-Hwa, 2017. "Co-gasification of woody biomass and chicken manure: Syngas production, biochar reutilization, and cost-benefit analysis," Energy, Elsevier, vol. 139(C), pages 732-742.
  37. Shukla, Parul & Giri, Balendu Shekhar & Mishra, Rakesh K. & Pandey, Ashok & Chaturvedi, Preeti, 2021. "Lignocellulosic biomass-based engineered biochar composites: A facile strategy for abatement of emerging pollutants and utilization in industrial applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
  38. Hillig, Débora Moraes & Pohlmann, Juliana Gonçalves & Manera, Christian & Perondi, Daniele & Pereira, Fernando Marcelo & Altafini, Carlos Roberto & Godinho, Marcelo, 2020. "Evaluation of the structural changes of a char produced by slow pyrolysis of biomass and of a high-ash coal during its combustion and their role in the reactivity and flue gas emissions," Energy, Elsevier, vol. 202(C).
  39. Filippo Marchelli & Massimo Curti & Mattia Tognin & Giorgio Rovero & Cristina Moliner & Elisabetta Arato & Barbara Bosio, 2020. "Experimental Study on the Solids Residence Time Distribution in Multiple Square-Based Spouted Beds," Energies, MDPI, vol. 13(18), pages 1-13, September.
  40. Bogdan Saletnik & Grzegorz Zagula & Marcin Bajcar & Maria Czernicka & Czeslaw Puchalski, 2018. "Biochar and Biomass Ash as a Soil Ameliorant: The Effect on Selected Soil Properties and Yield of Giant Miscanthus (Miscanthus x giganteus)," Energies, MDPI, vol. 11(10), pages 1-24, September.
  41. Růžičková, Jana & Raclavská, Helena & Juchelková, Dagmar & Kucbel, Marek & Raclavský, Konstantin & Švédová, Barbora & Šafář, Michal & Pfeifer, Christoph & Hrbek, Jitka, 2022. "Organic compounds in the char deposits characterising the combustion of unauthorised fuels in residential boilers," Energy, Elsevier, vol. 257(C).
  42. Alan, Hale & Köker, Ali Rıza, 2023. "Analyzing and mapping agricultural waste recycling research: An integrative review for conceptual framework and future directions," Resources Policy, Elsevier, vol. 85(PB).
  43. Campuzano, Felipe & Brown, Robert C. & Martínez, Juan Daniel, 2019. "Auger reactors for pyrolysis of biomass and wastes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 372-409.
  44. Zhu, Guangyue & Wen, Chang & Liu, Tianyu & Xu, Minghou & Ling, Peipei & Wen, Wuhao & Li, Ruonan, 2024. "Combustion and co-combustion of biochar: Combustion performance and pollutant emissions," Applied Energy, Elsevier, vol. 376(PA).
  45. Li, Zhi-guo & Gu, Chi-ming & Zhang, Run-hua & Ibrahim, Mohamed & Zhang, Guo-shi & Wang, Li & Zhang, Run-qin & Chen, Fang & Liu, Yi, 2017. "The benefic effect induced by biochar on soil erosion and nutrient loss of slopping land under natural rainfall conditions in central China," Agricultural Water Management, Elsevier, vol. 185(C), pages 145-150.
  46. Qiu, L. & Deng, Y.F. & Wang, F. & Davaritouchaee, M. & Yao, Y.Q., 2019. "A review on biochar-mediated anaerobic digestion with enhanced methane recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
  47. Piotr Wojewódzki & Joanna Lemanowicz & Bozena Debska & Samir A. Haddad & Erika Tobiasova, 2022. "The Application of Biochar from Waste Biomass to Improve Soil Fertility and Soil Enzyme Activity and Increase Carbon Sequestration," Energies, MDPI, vol. 16(1), pages 1-16, December.
  48. Ance Plavniece & Aleksandrs Volperts & Galina Dobele & Aivars Zhurinsh & Kätlin Kaare & Ivar Kruusenberg & Kaspars Kaprans & Ainars Knoks & Janis Kleperis, 2021. "Wood and Black Liquor-Based N-Doped Activated Carbon for Energy Application," Sustainability, MDPI, vol. 13(16), pages 1-17, August.
  49. Gupta, Shubhi & Gupta, Goutam Kishore & Mondal, Monoj Kumar, 2019. "Slow pyrolysis of chemically treated walnut shell for valuable products: Effect of process parameters and in-depth product analysis," Energy, Elsevier, vol. 181(C), pages 665-676.
  50. Md Said, Mohamad Syazarudin & Azni, Atiyyah Ameenah & Wan Ab Karim Ghani, Wan Azlina & Idris, Azni & Ja'afar, Mohamad Fakri Zaky & Mohd Salleh, Mohamad Amran, 2022. "Production of biochar from microwave pyrolysis of empty fruit bunch in an alumina susceptor," Energy, Elsevier, vol. 240(C).
  51. Surup, Gerrit Ralf & Leahy, James J. & Timko, Michael T. & Trubetskaya, Anna, 2020. "Hydrothermal carbonization of olive wastes to produce renewable, binder-free pellets for use as metallurgical reducing agents," Renewable Energy, Elsevier, vol. 155(C), pages 347-357.
  52. Hu, Sheng-Chun & Cheng, Jie & Wang, Wu-Ping & Zhu, Ya-Hong & Kang, Kang & Zhu, Ming-Qiang & Huang, Xiao-Hua, 2022. "Preparation and analysis of pyroligneous liquor, charcoal and gas from lacquer wood by carbonization method based on a biorefinery process," Energy, Elsevier, vol. 239(PA).
  53. Simone Marzeddu & Andrea Cappelli & Andrea Ambrosio & María Alejandra Décima & Paolo Viotti & Maria Rosaria Boni, 2021. "A Life Cycle Assessment of an Energy-Biochar Chain Involving a Gasification Plant in Italy," Land, MDPI, vol. 10(11), pages 1-29, November.
  54. Louise Delahaye & John Thomas Hobson & Matthew Peter Rando & Brenna Sweeney & Avery Bernard Brown & Geoffrey Allen Tompsett & Ayten Ates & N. Aaron Deskins & Michael Thomas Timko, 2020. "Experimental and Computational Evaluation of Heavy Metal Cation Adsorption for Molecular Design of Hydrothermal Char," Energies, MDPI, vol. 13(16), pages 1-24, August.
  55. Shurooq Badri Al-Badri & Ying Jiang & Stuart Thomas Wagland, 2018. "Possible Interactions and Interferences of Copper, Chromium, and Arsenic during the Gasification of Contaminated Waste Wood," Energies, MDPI, vol. 11(8), pages 1-17, July.
  56. Danai Frantzi & Anastasia Zabaniotou, 2021. "Waste-Based Intermediate Bioenergy Carriers: Syngas Production via Coupling Slow Pyrolysis with Gasification under a Circular Economy Model," Energies, MDPI, vol. 14(21), pages 1-37, November.
  57. Gupta, Goutam Kishore & Mondal, Monoj Kumar, 2019. "Bio-energy generation from sagwan sawdust via pyrolysis: Product distributions, characterizations and optimization using response surface methodology," Energy, Elsevier, vol. 170(C), pages 423-437.
  58. Mosleh Uddin, Md & Wen, Zhiyou & Mba Wright, Mark, 2022. "Techno-economic and environmental impact assessment of using corn stover biochar for manure derived renewable natural gas production," Applied Energy, Elsevier, vol. 321(C).
  59. Stamenković, Olivera S. & Siliveru, Kaliramesh & Veljković, Vlada B. & Banković-Ilić, Ivana B. & Tasić, Marija B. & Ciampitti, Ignacio A. & Đalović, Ivica G. & Mitrović, Petar M. & Sikora, Vladimir Š., 2020. "Production of biofuels from sorghum," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
  60. Bonassa, Gabriela & Schneider, Lara Talita & Canever, Victor Bruno & Cremonez, Paulo André & Frigo, Elisandro Pires & Dieter, Jonathan & Teleken, Joel Gustavo, 2018. "Scenarios and prospects of solid biofuel use in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2365-2378.
  61. Andrew N. Amenaghawon & Chinedu L. Anyalewechi & Charity O. Okieimen & Heri Septya Kusuma, 2021. "Biomass pyrolysis technologies for value-added products: a state-of-the-art review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14324-14378, October.
  62. Alexandre Tisserant & Francesco Cherubini, 2019. "Potentials, Limitations, Co-Benefits, and Trade-Offs of Biochar Applications to Soils for Climate Change Mitigation," Land, MDPI, vol. 8(12), pages 1-34, November.
  63. Javier Fermoso & Patricia Pizarro & Juan M. Coronado & David P. Serrano, 2017. "Advanced biofuels production by upgrading of pyrolysis bio‐oil," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 6(4), July.
  64. Campbell, Robert M. & Anderson, Nathaniel M. & Daugaard, Daren E. & Naughton, Helen T., 2018. "Financial viability of biofuel and biochar production from forest biomass in the face of market price volatility and uncertainty," Applied Energy, Elsevier, vol. 230(C), pages 330-343.
  65. Yang, Yadong & Shahbeik, Hossein & Shafizadeh, Alireza & Masoudnia, Nima & Rafiee, Shahin & Zhang, Yijia & Pan, Junting & Tabatabaei, Meisam & Aghbashlo, Mortaza, 2022. "Biomass microwave pyrolysis characterization by machine learning for sustainable rural biorefineries," Renewable Energy, Elsevier, vol. 201(P2), pages 70-86.
  66. Kabir, G. & Hameed, B.H., 2017. "Recent progress on catalytic pyrolysis of lignocellulosic biomass to high-grade bio-oil and bio-chemicals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 945-967.
  67. Malyan, Sandeep K. & Kumar, Smita S. & Fagodiya, Ram Kishor & Ghosh, Pooja & Kumar, Amit & Singh, Rajesh & Singh, Lakhveer, 2021. "Biochar for environmental sustainability in the energy-water-agroecosystem nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
  68. Ibn Ferjani, A. & Jeguirim, M. & Jellali, S. & Limousy, L. & Courson, C. & Akrout, H. & Thevenin, N. & Ruidavets, L. & Muller, A. & Bennici, S., 2019. "The use of exhausted grape marc to produce biofuels and biofertilizers: Effect of pyrolysis temperatures on biochars properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 425-433.
  69. Junwei Liu & Suriya Prakash Ganesan & Xin Li & Ankit Garg & Aman Singhal & Karthik Datta Dosetti & Haibao Feng, 2020. "Dynamics of Biochar-Silty Clay Interaction Using In-House Fabricated Cyclic Loading Apparatus: A Case Study of Coastal Clay and Novel Peach Biochar from the Qingdao Region of China," Sustainability, MDPI, vol. 12(7), pages 1-14, March.
  70. Sun-Min Kim & Jun-Ho Jo & Ye-Eun Lee & Yeong-Seok Yoo, 2016. "Comparative Study of Shell and Helically-Coiled Tube Heat Exchangers with Various Dimple Arrangements in Condensers for Odor Control in a Pyrolysis System," Energies, MDPI, vol. 9(12), pages 1, December.
  71. Bhoi, P.R. & Ouedraogo, A.S. & Soloiu, V. & Quirino, R., 2020. "Recent advances on catalysts for improving hydrocarbon compounds in bio-oil of biomass catalytic pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
  72. Gao, Qi & Ni, Liangmeng & Ren, Hao & Su, Mengfu & Rong, Shaowen & Liu, Zhijia, 2024. "Microwave vacuum pyrolysis rapidly transforms bamboo into solid biofuel: Predicting fuel performances by response surface methodology," Renewable Energy, Elsevier, vol. 235(C).
  73. Samar Elkhalifa & Hamish R. Mackey & Tareq Al-Ansari & Gordon McKay, 2022. "Pyrolysis of Biosolids to Produce Biochars: A Review," Sustainability, MDPI, vol. 14(15), pages 1-19, August.
  74. Athar Mahmood & Xiukang Wang & Ahmad Naeem Shahzad & Sajid Fiaz & Habib Ali & Maria Naqve & Muhammad Mansoor Javaid & Sahar Mumtaz & Mehwish Naseer & Renji Dong, 2021. "Perspectives on Bioenergy Feedstock Development in Pakistan: Challenges and Opportunities," Sustainability, MDPI, vol. 13(15), pages 1-24, July.
  75. Mika Pahnila & Aki Koskela & Petri Sulasalmi & Timo Fabritius, 2023. "A Review of Pyrolysis Technologies and the Effect of Process Parameters on Biocarbon Properties," Energies, MDPI, vol. 16(19), pages 1-27, October.
  76. Jellali, Salah & Khiari, Besma & Usman, Muhammad & Hamdi, Helmi & Charabi, Yassine & Jeguirim, Mejdi, 2021. "Sludge-derived biochars: A review on the influence of synthesis conditions on pollutants removal efficiency from wastewaters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
  77. Abhishek Kumar & Tanushree Bhattacharya, 2021. "Biochar: a sustainable solution," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 6642-6680, May.
  78. Gurevich Messina, L.I. & Bonelli, P.R. & Cukierman, A.L., 2017. "Effect of acid pretreatment and process temperature on characteristics and yields of pyrolysis products of peanut shells," Renewable Energy, Elsevier, vol. 114(PB), pages 697-707.
  79. He, Xinyan & Liu, Zhaoxia & Niu, Wenjuan & Yang, Li & Zhou, Tan & Qin, Di & Niu, Zhiyou & Yuan, Qiaoxia, 2018. "Effects of pyrolysis temperature on the physicochemical properties of gas and biochar obtained from pyrolysis of crop residues," Energy, Elsevier, vol. 143(C), pages 746-756.
  80. Machineni, Lakshmi & Deepanraj, B. & Chew, Kit Wayne & Rao, A. Gangagni, 2023. "Biohydrogen production from lignocellulosic feedstock: Abiotic and biotic methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
  81. Mohsin Raza & Abrar Inayat & Ashfaq Ahmed & Farrukh Jamil & Chaouki Ghenai & Salman R. Naqvi & Abdallah Shanableh & Muhammad Ayoub & Ammara Waris & Young-Kwon Park, 2021. "Progress of the Pyrolyzer Reactors and Advanced Technologies for Biomass Pyrolysis Processing," Sustainability, MDPI, vol. 13(19), pages 1-42, October.
  82. Naqvi, Salman Raza & Jamshaid, Sana & Naqvi, Muhammad & Farooq, Wasif & Niazi, Muhammad Bilal Khan & Aman, Zaeem & Zubair, Muhammad & Ali, Majid & Shahbaz, Muhammad & Inayat, Abrar & Afzal, Waheed, 2018. "Potential of biomass for bioenergy in Pakistan based on present case and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1247-1258.
  83. Md Sumon Reza & Zhanar Baktybaevna Iskakova & Shammya Afroze & Kairat Kuterbekov & Asset Kabyshev & Kenzhebatyr Zh. Bekmyrza & Marzhan M. Kubenova & Muhammad Saifullah Abu Bakar & Abul K. Azad & Hrido, 2023. "Influence of Catalyst on the Yield and Quality of Bio-Oil for the Catalytic Pyrolysis of Biomass: A Comprehensive Review," Energies, MDPI, vol. 16(14), pages 1-39, July.
  84. Jia, Jixiu & Zhao, Lixin & Liu, Zhidan & Hao, Xiaowen & Huo, Lili & Zhao, Yanan & Yao, Zonglu, 2022. "Spray atomization characteristics of biomass pyrolysis tar: Influence of methanol addition, temperature, and atomization pressure," Energy, Elsevier, vol. 242(C).
  85. Mahmoud Mazarji & Muhammad Tukur Bayero & Tatiana Minkina & Svetlana Sushkova & Saglara Mandzhieva & Andrey Tereshchenko & Anna Timofeeva & Tatiana Bauer & Marina Burachevskaya & Rıdvan Kızılkaya & Co, 2021. "Realizing United Nations Sustainable Development Goals for Greener Remediation of Heavy Metals-Contaminated Soils by Biochar: Emerging Trends and Future Directions," Sustainability, MDPI, vol. 13(24), pages 1-12, December.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.