IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v170y2019icp423-437.html
   My bibliography  Save this article

Bio-energy generation from sagwan sawdust via pyrolysis: Product distributions, characterizations and optimization using response surface methodology

Author

Listed:
  • Gupta, Goutam Kishore
  • Mondal, Monoj Kumar

Abstract

Present work demonstrates the pyrolysis of sagwan sawdust for the production of bio-oil and biochar. Thermal degradation characteristics of sawdust by thermo-gravimetric analyzer revealed different zones of degradation. The effects of temperature, nitrogen flow rate and packed bed height were observed and optimized using response surface methodology with Box-Behnken design. For both cases, the quadratic model proved non-linear behaviour of the model response. Co-efficient of determination (R2) value for bio-oil and biochar yield was 0.9905 and 0.9975, respectively justifying excellent fitting of the model. Optimum yield (bio-oil and biochar) were obtained as 48.7083 and 25.5627 wt. %, respectively at the temperature of 640 °C, packed bed height of 8 cm and nitrogen flow rate of 180 mL/min. Presence of various organic compounds and chemicals were confirmed by GC-MS, FTIR analysis and physicochemical analysis described the fuel characteristics. Also, biochar was characterized by proximate and ultimate analysis, HHV, BET, FTIR and SEM-EDX. The above results revealed the utility of bio-oil as engine fuel or source of valuable chemicals. The HHV, porous nature of biochar along with high BET surface area and valuable nutrients indicates its utility as solid fuel, as an adsorbent or in soil amendment.

Suggested Citation

  • Gupta, Goutam Kishore & Mondal, Monoj Kumar, 2019. "Bio-energy generation from sagwan sawdust via pyrolysis: Product distributions, characterizations and optimization using response surface methodology," Energy, Elsevier, vol. 170(C), pages 423-437.
  • Handle: RePEc:eee:energy:v:170:y:2019:i:c:p:423-437
    DOI: 10.1016/j.energy.2018.12.166
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218325404
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.12.166?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Luo, Siyi & Yi, Chuijie & Zhou, Yangmin, 2013. "Bio-oil production by pyrolysis of biomass using hot blast furnace slag," Renewable Energy, Elsevier, vol. 50(C), pages 373-377.
    2. Tripathi, Manoj & Sahu, J.N. & Ganesan, P., 2016. "Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 467-481.
    3. Anupam, Kumar & Sharma, Arvind Kumar & Lal, Priti Shivhare & Dutta, Suman & Maity, Sudip, 2016. "Preparation, characterization and optimization for upgrading Leucaena leucocephala bark to biochar fuel with high energy yielding," Energy, Elsevier, vol. 106(C), pages 743-756.
    4. Goyal, H.B. & Seal, Diptendu & Saxena, R.C., 2008. "Bio-fuels from thermochemical conversion of renewable resources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(2), pages 504-517, February.
    5. Lee, Jechan & Kim, Ki-Hyun & Kwon, Eilhann E., 2017. "Biochar as a Catalyst," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 70-79.
    6. Collard, François-Xavier & Blin, Joël, 2014. "A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 594-608.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Růžičková, Jana & Raclavská, Helena & Juchelková, Dagmar & Kucbel, Marek & Raclavský, Konstantin & Švédová, Barbora & Šafář, Michal & Pfeifer, Christoph & Hrbek, Jitka, 2022. "Organic compounds in the char deposits characterising the combustion of unauthorised fuels in residential boilers," Energy, Elsevier, vol. 257(C).
    2. Bahadorian, Amirmahdi & Sadrameli, Seyed Mojtaba & Pahlavanzadeh, Hassan & Ilani Kashkouli, Mohammad Nabi, 2023. "Optimization study of linseed biodiesel production via in-situ transesterification and slow pyrolysis of obtained linseed residue," Renewable Energy, Elsevier, vol. 203(C), pages 10-19.
    3. Svetlana Islamova & Anastasia Tartygasheva & Julia Karaeva & Vladimir Panchenko & Yuriy Litti, 2023. "A Comprehensive Study on the Combustion of Sunflower Husk Pellets by Thermogravimetric and Kinetic Analysis, Kriging Method," Agriculture, MDPI, vol. 13(4), pages 1-18, April.
    4. Gupta, Shubhi & Gupta, Goutam Kishore & Mondal, Monoj Kumar, 2019. "Slow pyrolysis of chemically treated walnut shell for valuable products: Effect of process parameters and in-depth product analysis," Energy, Elsevier, vol. 181(C), pages 665-676.
    5. Sahoo, Abhisek & Saini, Komal & Negi, Shweta & Kumar, Jitendra & Pant, Kamal K. & Bhaskar, Thallada, 2022. "Inspecting the bioenergy potential of noxious Vachellia nilotica weed via pyrolysis: Thermo-kinetic study, neural network modeling and response surface optimization," Renewable Energy, Elsevier, vol. 185(C), pages 386-402.
    6. Hasan, M.M. & Rasul, M.G. & Ashwath, N. & Khan, M.M.K. & Jahirul, M.I., 2022. "Fast pyrolysis of Beauty Leaf Fruit Husk (BLFH) in an auger reactor: Effect of temperature on the yield and physicochemical properties of BLFH oil," Renewable Energy, Elsevier, vol. 194(C), pages 1098-1109.
    7. Singh, Rishikesh Kumar & Chakraborty, Jyoti Prasad & Sarkar, Arnab, 2020. "Optimizing the torrefaction of pigeon pea stalk (cajanus cajan) using response surface methodology (RSM) and characterization of solid, liquid and gaseous products," Renewable Energy, Elsevier, vol. 155(C), pages 677-690.
    8. Mong, Guo Ren & Chong, Cheng Tung & Ng, Jo-Han & Chong, William Woei Fong & Ong, Hwai Chyuan & Tran, Manh-Vu, 2021. "Multivariate optimisation study and life cycle assessment of microwave-induced pyrolysis of horse manure for waste valorisation and management," Energy, Elsevier, vol. 216(C).
    9. Singh, Rishikesh Kumar & Sarkar, Arnab & Chakraborty, Jyoti Prasad, 2020. "Effect of torrefaction on the physicochemical properties of eucalyptus derived biofuels: estimation of kinetic parameters and optimizing torrefaction using response surface methodology (RSM)," Energy, Elsevier, vol. 198(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bhoi, P.R. & Ouedraogo, A.S. & Soloiu, V. & Quirino, R., 2020. "Recent advances on catalysts for improving hydrocarbon compounds in bio-oil of biomass catalytic pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    2. Al-Rumaihi, Aisha & Shahbaz, Muhammad & Mckay, Gordon & Mackey, Hamish & Al-Ansari, Tareq, 2022. "A review of pyrolysis technologies and feedstock: A blending approach for plastic and biomass towards optimum biochar yield," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    3. Mohsin Raza & Abrar Inayat & Ashfaq Ahmed & Farrukh Jamil & Chaouki Ghenai & Salman R. Naqvi & Abdallah Shanableh & Muhammad Ayoub & Ammara Waris & Young-Kwon Park, 2021. "Progress of the Pyrolyzer Reactors and Advanced Technologies for Biomass Pyrolysis Processing," Sustainability, MDPI, vol. 13(19), pages 1-42, October.
    4. Jun Sheng Teh & Yew Heng Teoh & Heoy Geok How & Thanh Danh Le & Yeoh Jun Jie Jason & Huu Tho Nguyen & Dong Lin Loo, 2021. "The Potential of Sustainable Biomass Producer Gas as a Waste-to-Energy Alternative in Malaysia," Sustainability, MDPI, vol. 13(7), pages 1-31, April.
    5. Primaz, Carmem T. & Ribes-Greus, Amparo & Jacques, Rosângela A., 2021. "Valorization of cotton residues for production of bio-oil and engineered biochar," Energy, Elsevier, vol. 235(C).
    6. Liu, Zhongzhe & Singer, Simcha & Tong, Yiran & Kimbell, Lee & Anderson, Erik & Hughes, Matthew & Zitomer, Daniel & McNamara, Patrick, 2018. "Characteristics and applications of biochars derived from wastewater solids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 650-664.
    7. Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.
    8. Qin, Fanzhi & Zhang, Chen & Zeng, Guangming & Huang, Danlian & Tan, Xiaofei & Duan, Abing, 2022. "Lignocellulosic biomass carbonization for biochar production and characterization of biochar reactivity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    9. Suopajärvi, Hannu & Pongrácz, Eva & Fabritius, Timo, 2013. "The potential of using biomass-based reducing agents in the blast furnace: A review of thermochemical conversion technologies and assessments related to sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 511-528.
    10. Andrew N. Amenaghawon & Chinedu L. Anyalewechi & Charity O. Okieimen & Heri Septya Kusuma, 2021. "Biomass pyrolysis technologies for value-added products: a state-of-the-art review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14324-14378, October.
    11. Kartal, Furkan & Dalbudak, Yağmur & Özveren, Uğur, 2023. "Prediction of thermal degradation of biopolymers in biomass under pyrolysis atmosphere by means of machine learning," Renewable Energy, Elsevier, vol. 204(C), pages 774-787.
    12. Kwon, Dohee & Kim, Youngju & Choi, Dongho & Jung, Sungyup & Tsang, Yiu Fai & Kwon, Eilhann E., 2024. "Enhanced thermochemical valorization of coconut husk through carbon dioxide integration: A sustainable approach to agricultural residue utilization," Applied Energy, Elsevier, vol. 369(C).
    13. Simone Marzeddu & Andrea Cappelli & Andrea Ambrosio & María Alejandra Décima & Paolo Viotti & Maria Rosaria Boni, 2021. "A Life Cycle Assessment of an Energy-Biochar Chain Involving a Gasification Plant in Italy," Land, MDPI, vol. 10(11), pages 1-29, November.
    14. Bonassa, Gabriela & Schneider, Lara Talita & Canever, Victor Bruno & Cremonez, Paulo André & Frigo, Elisandro Pires & Dieter, Jonathan & Teleken, Joel Gustavo, 2018. "Scenarios and prospects of solid biofuel use in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2365-2378.
    15. Zhenghui Xu & Xiang Xiao & Ping Fang & Lyumeng Ye & Jianhang Huang & Haiwen Wu & Zijun Tang & Dongyao Chen, 2020. "Comparison of Combustion and Pyrolysis Behavior of the Peanut Shells in Air and N 2 : Kinetics, Thermodynamics and Gas Emissions," Sustainability, MDPI, vol. 12(2), pages 1-14, January.
    16. Gouws, S.M. & Carrier, M. & Bunt, J.R. & Neomagus, H.W.J.P., 2021. "Co-pyrolysis of coal and raw/torrefied biomass: A review on chemistry, kinetics and implementation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    17. Lohri, Christian Riuji & Rajabu, Hassan Mtoro & Sweeney, Daniel J. & Zurbrügg, Christian, 2016. "Char fuel production in developing countries – A review of urban biowaste carbonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1514-1530.
    18. Ance Plavniece & Aleksandrs Volperts & Galina Dobele & Aivars Zhurinsh & Kätlin Kaare & Ivar Kruusenberg & Kaspars Kaprans & Ainars Knoks & Janis Kleperis, 2021. "Wood and Black Liquor-Based N-Doped Activated Carbon for Energy Application," Sustainability, MDPI, vol. 13(16), pages 1-17, August.
    19. Cai, Junmeng & He, Yifeng & Yu, Xi & Banks, Scott W. & Yang, Yang & Zhang, Xingguang & Yu, Yang & Liu, Ronghou & Bridgwater, Anthony V., 2017. "Review of physicochemical properties and analytical characterization of lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 309-322.
    20. Kawale, Harshal D. & Kishore, Nanda, 2020. "Comparative study on pyrolysis of Delonix Regia, Pinewood sawdust and their co-feed for plausible bio-fuels production," Energy, Elsevier, vol. 203(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:170:y:2019:i:c:p:423-437. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.