A Life Cycle Assessment of an Energy-Biochar Chain Involving a Gasification Plant in Italy
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Lee, Jechan & Kim, Ki-Hyun & Kwon, Eilhann E., 2017. "Biochar as a Catalyst," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 70-79.
- Saidur, R. & Abdelaziz, E.A. & Demirbas, A. & Hossain, M.S. & Mekhilef, S., 2011. "A review on biomass as a fuel for boilers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2262-2289, June.
- Saxena, R.C. & Adhikari, D.K. & Goyal, H.B., 2009. "Biomass-based energy fuel through biochemical routes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(1), pages 167-178, January.
- Yao, Zhiyi & You, Siming & Ge, Tianshu & Wang, Chi-Hwa, 2018. "Biomass gasification for syngas and biochar co-production: Energy application and economic evaluation," Applied Energy, Elsevier, vol. 209(C), pages 43-55.
- Bingyao Zeng & Naoto Shimizu, 2021. "Hydrogen Generation from Wood Chip and Biochar by Combined Continuous Pyrolysis and Hydrothermal Gasification," Energies, MDPI, vol. 14(13), pages 1-11, June.
- Johannes Lehmann, 2007. "A handful of carbon," Nature, Nature, vol. 447(7141), pages 143-144, May.
- Hammond, Jim & Shackley, Simon & Sohi, Saran & Brownsort, Peter, 2011. "Prospective life cycle carbon abatement for pyrolysis biochar systems in the UK," Energy Policy, Elsevier, vol. 39(5), pages 2646-2655, May.
- María Alejandra Décima & Simone Marzeddu & Margherita Barchiesi & Camilla Di Marcantonio & Agostina Chiavola & Maria Rosaria Boni, 2021. "A Review on the Removal of Carbamazepine from Aqueous Solution by Using Activated Carbon and Biochar," Sustainability, MDPI, vol. 13(21), pages 1-50, October.
- Bassano, Claudia & Deiana, Paolo & Vilardi, Giorgio & Verdone, Nicola, 2020. "Modeling and economic evaluation of carbon capture and storage technologies integrated into synthetic natural gas and power-to-gas plants," Applied Energy, Elsevier, vol. 263(C).
- Huang, Y. & Anderson, M. & McIlveen-Wright, D. & Lyons, G.A. & McRoberts, W.C. & Wang, Y.D. & Roskilly, A.P. & Hewitt, N.J., 2015. "Biochar and renewable energy generation from poultry litter waste: A technical and economic analysis based on computational simulations," Applied Energy, Elsevier, vol. 160(C), pages 656-663.
- Maria Rosaria Boni & Agostina Chiavola & Simone Marzeddu, 2018. "Application of Biochar to the Remediation of Pb-Contaminated Solutions," Sustainability, MDPI, vol. 10(12), pages 1-14, November.
- Tripathi, Manoj & Sahu, J.N. & Ganesan, P., 2016. "Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 467-481.
- Persson, H. & Han, T. & Sandström, L. & Xia, W. & Evangelopoulos, P. & Yang, W., 2018. "Fractionation of liquid products from pyrolysis of lignocellulosic biomass by stepwise thermal treatment," Energy, Elsevier, vol. 154(C), pages 346-351.
- Qambrani, Naveed Ahmed & Rahman, Md. Mukhlesur & Won, Seunggun & Shim, Soomin & Ra, Changsix, 2017. "Biochar properties and eco-friendly applications for climate change mitigation, waste management, and wastewater treatment: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 255-273.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Hugo Alexander Rondón-Quintana & Fredy Alberto Reyes-Lizcano & Saieth Baudilio Chaves-Pabón & Juan Gabriel Bastidas-Martínez & Carlos Alfonso Zafra-Mejía, 2022. "Use of Biochar in Asphalts: Review," Sustainability, MDPI, vol. 14(8), pages 1-12, April.
- Nura Shehu Aliyu Yaro & Muslich Hartadi Sutanto & Noor Zainab Habib & Aliyu Usman & Jibrin Mohammed Kaura & Abdulfatai Adinoyi Murana & Abdullahi Haruna Birniwa & Ahmad Hussaini Jagaba, 2023. "A Comprehensive Review of Biochar Utilization for Low-Carbon Flexible Asphalt Pavements," Sustainability, MDPI, vol. 15(8), pages 1-32, April.
- Han Ren & Zilu Li & Hualin Chen & Jiangmin Zhou & Chengqun Lv, 2022. "Effects of Biochar and Plant Growth-Promoting Rhizobacteria on Plant Performance and Soil Environmental Stability," Sustainability, MDPI, vol. 14(17), pages 1-15, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.
- Kung, Chih-Chun & Mu, Jianhong E., 2019. "Prospect of China's renewable energy development from pyrolysis and biochar applications under climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
- Shukla, Parul & Giri, Balendu Shekhar & Mishra, Rakesh K. & Pandey, Ashok & Chaturvedi, Preeti, 2021. "Lignocellulosic biomass-based engineered biochar composites: A facile strategy for abatement of emerging pollutants and utilization in industrial applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
- Hong, Ziyu & Zhong, Fei & Niu, Wenjuan & Zhang, Kai & Su, Jing & Liu, Jiazheng & Li, Lijie & Wu, Fengrui, 2020. "Effects of temperature and particle size on the compositions, energy conversions and structural characteristics of pyrolysis products from different crop residues," Energy, Elsevier, vol. 190(C).
- Thakkar, Jignesh & Kumar, Amit & Ghatora, Sonia & Canter, Christina, 2016. "Energy balance and greenhouse gas emissions from the production and sequestration of charcoal from agricultural residues," Renewable Energy, Elsevier, vol. 94(C), pages 558-567.
- Liu, Zhongzhe & Singer, Simcha & Tong, Yiran & Kimbell, Lee & Anderson, Erik & Hughes, Matthew & Zitomer, Daniel & McNamara, Patrick, 2018. "Characteristics and applications of biochars derived from wastewater solids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 650-664.
- Qin, Fanzhi & Zhang, Chen & Zeng, Guangming & Huang, Danlian & Tan, Xiaofei & Duan, Abing, 2022. "Lignocellulosic biomass carbonization for biochar production and characterization of biochar reactivity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
- Kung, Chih-Chun & McCarl, Bruce A. & Cao, Xiaoyong, 2013. "Economics of pyrolysis-based energy production and biochar utilization: A case study in Taiwan," Energy Policy, Elsevier, vol. 60(C), pages 317-323.
- Santos Dalólio, Felipe & da Silva, Jadir Nogueira & Carneiro de Oliveira, Angélica Cássia & Ferreira Tinôco, Ilda de Fátima & Christiam Barbosa, Rúben & Resende, Michael de Oliveira & Teixeira Albino,, 2017. "Poultry litter as biomass energy: A review and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 941-949.
- Lee, Jechan & Kim, Soosan & You, Siming & Park, Young-Kwon, 2023. "Bioenergy generation from thermochemical conversion of lignocellulosic biomass-based integrated renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
- Savvas L. Douvartzides & Nikolaos D. Charisiou & Kyriakos N. Papageridis & Maria A. Goula, 2019. "Green Diesel: Biomass Feedstocks, Production Technologies, Catalytic Research, Fuel Properties and Performance in Compression Ignition Internal Combustion Engines," Energies, MDPI, vol. 12(5), pages 1-41, February.
- Zhu, Deao & Wang, Qinhui & Xie, Guilin & Ye, Zefu & Zhu, Zhujun & Ye, Chao, 2024. "Effect of air equivalence ratio on the characteristics of biomass partial gasification for syngas and biochar co-production in the fluidized bed," Renewable Energy, Elsevier, vol. 222(C).
- Kächele, Rebecca & Nurkowski, Daniel & Martin, Jacob & Akroyd, Jethro & Kraft, Markus, 2019. "An assessment of the viability of alternatives to biodiesel transport fuels," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
- Ngoc-Dan Cao, Thanh & Mukhtar, Hussnain & Yu, Chang-Ping & Bui, Xuan-Thanh & Pan, Shu-Yuan, 2022. "Agricultural waste-derived biochar in microbial fuel cells towards a carbon-negative circular economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
- Mosleh Uddin, Md & Wen, Zhiyou & Mba Wright, Mark, 2022. "Techno-economic and environmental impact assessment of using corn stover biochar for manure derived renewable natural gas production," Applied Energy, Elsevier, vol. 321(C).
- Khodaei, Hassan & Olson, Chris & Nikrityuk, Petr, 2019. "Numerical investigations of the impact of inflow conditions on characteristics of a large-scale pyrolysis unit," Energy, Elsevier, vol. 169(C), pages 1101-1111.
- Anand, Abhijeet & Kumar, Vivek & Kaushal, Priyanka, 2022. "Biochar and its twin benefits: Crop residue management and climate change mitigation in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
- Richter, Joseph P. & Weisberger, Joshua M. & Mollendorf, Joseph C. & DesJardin, Paul E., 2017. "Emissions from a domestic two-stage wood-fired hydronic heater: Effects of non-homogeneous fuel decomposition," Renewable Energy, Elsevier, vol. 112(C), pages 187-196.
- Chiappero, Marco & Norouzi, Omid & Hu, Mingyu & Demichelis, Francesca & Berruti, Franco & Di Maria, Francesco & Mašek, Ondřej & Fiore, Silvia, 2020. "Review of biochar role as additive in anaerobic digestion processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
- Malyan, Sandeep K. & Kumar, Smita S. & Fagodiya, Ram Kishor & Ghosh, Pooja & Kumar, Amit & Singh, Rajesh & Singh, Lakhveer, 2021. "Biochar for environmental sustainability in the energy-water-agroecosystem nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
More about this item
Keywords
agricultural land detection; biochar; environmental impacts; land-climate interaction; LCA; gasification; GWP; natural resources management; OpenLCA; pyrolisis;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:10:y:2021:i:11:p:1256-:d:680996. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.