IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i13p2477-d243501.html
   My bibliography  Save this article

Application of Biochar Derived from Different Types of Biomass and Treatment Methods as a Fuel Source for Direct Carbon Fuel Cells

Author

Listed:
  • Lithnes Kalaivani Palniandy

    (School of Engineering, Faculty of Innovation and Technology, Taylor’s University Lakeside Campus, Jalan Taylor’s, Subang Jaya 47500, Selangor, Malaysia)

  • Li Wan Yoon

    (School of Engineering, Faculty of Innovation and Technology, Taylor’s University Lakeside Campus, Jalan Taylor’s, Subang Jaya 47500, Selangor, Malaysia)

  • Wai Yin Wong

    (Fuel Cell Institute, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia)

  • Siek-Ting Yong

    (School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor, Malaysia)

  • Ming Meng Pang

    (School of Engineering, Faculty of Innovation and Technology, Taylor’s University Lakeside Campus, Jalan Taylor’s, Subang Jaya 47500, Selangor, Malaysia)

Abstract

The direct carbon fuel cell (DCFC) is an emerging technology for energy production. The application of biomass in DCFCs will be a major transition from the use of coal to generate energy. However, the relationship between biomass or biochar composition and the electrochemical performance of a DCFC is yet to be studied. The performance of a DCFC using fuel sources derived from woody and non-woody biomass were compared in this study. The effect of pyrolysis temperature ranges from 550 °C to 850 °C on the preparation of biochar from rubber wood (RW) and rice husk (RH) were evaluated for power generation from DCFCs. In addition, the effect of applying chemical pre-treatment and post-treatment on biochar were further investigated for DCFC performance. In general, the power density derived from rubber wood biochar is significantly higher (2.21 mW cm −2 ) compared to rice husk biochar (0.07 mW cm −2 ). This might be due to the presence of an oxygen functional group, higher fixed carbon content, and lower ash content in rubber wood biochar. The acid and alkaline pre-treatment and post-treatment have altered the composition with a lower ash content in rubber wood biochar. The structural and compositional alterations in alkaline pre-treatment bring a positive effect in enhancing the power density from DCFCs. This study concludes that woody biochar is more suitable for DCFC application, and alkaline pre-treatment in the preparation of biochar enhances the electrochemical activity of DCFC. Further investigation on the optimization of DCFC operating conditions could be performed.

Suggested Citation

  • Lithnes Kalaivani Palniandy & Li Wan Yoon & Wai Yin Wong & Siek-Ting Yong & Ming Meng Pang, 2019. "Application of Biochar Derived from Different Types of Biomass and Treatment Methods as a Fuel Source for Direct Carbon Fuel Cells," Energies, MDPI, vol. 12(13), pages 1-15, June.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:13:p:2477-:d:243501
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/13/2477/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/13/2477/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mahmud, L.S. & Muchtar, A. & Somalu, M.R., 2017. "Challenges in fabricating planar solid oxide fuel cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 105-116.
    2. Tripathi, Manoj & Sahu, J.N. & Ganesan, P., 2016. "Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 467-481.
    3. Ahn, Seong Yool & Eom, Seong Yong & Rhie, Young Hoon & Sung, Yon Mo & Moon, Cheor Eon & Choi, Gyung Min & Kim, Duck Jool, 2013. "Utilization of wood biomass char in a direct carbon fuel cell (DCFC) system," Applied Energy, Elsevier, vol. 105(C), pages 207-216.
    4. Shaikh, Shabana P.S. & Muchtar, Andanastuti & Somalu, Mahendra R., 2015. "A review on the selection of anode materials for solid-oxide fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1-8.
    5. Rady, Adam C. & Giddey, Sarbjit & Kulkarni, Aniruddha & Badwal, Sukhvinder P.S. & Bhattacharya, Sankar & Ladewig, Bradley P., 2014. "Direct carbon fuel cell operation on brown coal," Applied Energy, Elsevier, vol. 120(C), pages 56-64.
    6. Shi-Xiang Zhao & Na Ta & Xu-Dong Wang, 2017. "Effect of Temperature on the Structural and Physicochemical Properties of Biochar with Apple Tree Branches as Feedstock Material," Energies, MDPI, vol. 10(9), pages 1-15, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khushbu Kumari & Raushan Kumar & Nirmali Bordoloi & Tatiana Minkina & Chetan Keswani & Kuldeep Bauddh, 2023. "Unravelling the Recent Developments in the Production Technology and Efficient Applications of Biochar for Agro-Ecosystems," Agriculture, MDPI, vol. 13(3), pages 1-26, February.
    2. John Steven Devia-Orjuela & Christian E Alvarez-Pugliese & Dayana Donneys-Victoria & Nilson Marriaga Cabrales & Luz Edith Barba Ho & Balazs Brém & Anca Sauciuc & Emese Gál & Douglas Espin & Martin Sch, 2019. "Evaluation of Press Mud, Vinasse Powder and Extraction Sludge with Ethanol in a Pyrolysis Process," Energies, MDPI, vol. 12(21), pages 1-21, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ozalp, N. & Abedini, H. & Abuseada, M. & Davis, R. & Rutten, J. & Verschoren, J. & Ophoff, C. & Moens, D., 2022. "An overview of direct carbon fuel cells and their promising potential on coupling with solar thermochemical carbon production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    2. Hao, Wenbin & Mi, Yongli, 2016. "Evaluation of waste paper as a source of carbon fuel for hybrid direct carbon fuel cells," Energy, Elsevier, vol. 107(C), pages 122-130.
    3. Hao, Wenbin & He, Xiaojin & Mi, Yongli, 2014. "Achieving high performance in intermediate temperature direct carbon fuel cells with renewable carbon as a fuel source," Applied Energy, Elsevier, vol. 135(C), pages 174-181.
    4. Cai, Weizi & Zhou, Qian & Xie, Yongmin & Liu, Jiang & Long, Guohui & Cheng, Shuang & Liu, Meilin, 2016. "A direct carbon solid oxide fuel cell operated on a plant derived biofuel with natural catalyst," Applied Energy, Elsevier, vol. 179(C), pages 1232-1241.
    5. Khiari, Besma & Jeguirim, Mejdi & Limousy, Lionel & Bennici, Simona, 2019. "Biomass derived chars for energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 253-273.
    6. Cai, Weizi & Cao, Dan & Zhou, Mingyang & Yan, Xiaomin & Li, Yuzhi & Wu, Zhen & Lü, Shengping & Mao, Caiyun & Xie, Yongmin & Zhao, Caiwen & Yu, Jialing & Ni, Meng & Liu, Jiang & Wang, Hailin, 2020. "Sulfur-tolerant Fe-doped La0·3Sr0·7TiO3 perovskite as anode of direct carbon solid oxide fuel cells," Energy, Elsevier, vol. 211(C).
    7. Primaz, Carmem T. & Ribes-Greus, Amparo & Jacques, Rosângela A., 2021. "Valorization of cotton residues for production of bio-oil and engineered biochar," Energy, Elsevier, vol. 235(C).
    8. Liu, Zhongzhe & Singer, Simcha & Tong, Yiran & Kimbell, Lee & Anderson, Erik & Hughes, Matthew & Zitomer, Daniel & McNamara, Patrick, 2018. "Characteristics and applications of biochars derived from wastewater solids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 650-664.
    9. Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.
    10. Qin, Fanzhi & Zhang, Chen & Zeng, Guangming & Huang, Danlian & Tan, Xiaofei & Duan, Abing, 2022. "Lignocellulosic biomass carbonization for biochar production and characterization of biochar reactivity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    11. Kumar N, Sasi & Grekov, Denys & Pré, Pascaline & Alappat, Babu J., 2020. "Microwave mode of heating in the preparation of porous carbon materials for adsorption and energy storage applications – An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    12. Wan Adibah Wan Mahari & Nur Fatihah Zainuddin & Wan Mohd Norsani Wan Nik & Cheng Tung Chong & Su Shiung Lam, 2016. "Pyrolysis Recovery of Waste Shipping Oil Using Microwave Heating," Energies, MDPI, vol. 9(10), pages 1-9, September.
    13. Hillig, Débora Moraes & Pohlmann, Juliana Gonçalves & Manera, Christian & Perondi, Daniele & Pereira, Fernando Marcelo & Altafini, Carlos Roberto & Godinho, Marcelo, 2020. "Evaluation of the structural changes of a char produced by slow pyrolysis of biomass and of a high-ash coal during its combustion and their role in the reactivity and flue gas emissions," Energy, Elsevier, vol. 202(C).
    14. Mirkouei, Amin & Haapala, Karl R. & Sessions, John & Murthy, Ganti S., 2017. "A review and future directions in techno-economic modeling and optimization of upstream forest biomass to bio-oil supply chains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 15-35.
    15. Li, Zhi-guo & Gu, Chi-ming & Zhang, Run-hua & Ibrahim, Mohamed & Zhang, Guo-shi & Wang, Li & Zhang, Run-qin & Chen, Fang & Liu, Yi, 2017. "The benefic effect induced by biochar on soil erosion and nutrient loss of slopping land under natural rainfall conditions in central China," Agricultural Water Management, Elsevier, vol. 185(C), pages 145-150.
    16. Piotr Wojewódzki & Joanna Lemanowicz & Bozena Debska & Samir A. Haddad & Erika Tobiasova, 2022. "The Application of Biochar from Waste Biomass to Improve Soil Fertility and Soil Enzyme Activity and Increase Carbon Sequestration," Energies, MDPI, vol. 16(1), pages 1-16, December.
    17. Gupta, Shubhi & Gupta, Goutam Kishore & Mondal, Monoj Kumar, 2019. "Slow pyrolysis of chemically treated walnut shell for valuable products: Effect of process parameters and in-depth product analysis," Energy, Elsevier, vol. 181(C), pages 665-676.
    18. Andrew N. Amenaghawon & Chinedu L. Anyalewechi & Charity O. Okieimen & Heri Septya Kusuma, 2021. "Biomass pyrolysis technologies for value-added products: a state-of-the-art review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14324-14378, October.
    19. Daniele Basso & Elsa Weiss-Hortala & Francesco Patuzzi & Marco Baratieri & Luca Fiori, 2018. "In Deep Analysis on the Behavior of Grape Marc Constituents during Hydrothermal Carbonization," Energies, MDPI, vol. 11(6), pages 1-19, May.
    20. Guo, Liang & Calo, J.M. & Kearney, Clare & Grimshaw, Pengpeng, 2014. "The anodic reaction zone and performance of different carbonaceous fuels in a batch molten hydroxide direct carbon fuel cell," Applied Energy, Elsevier, vol. 129(C), pages 32-38.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:13:p:2477-:d:243501. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.