IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v152y2021ics1364032121009412.html
   My bibliography  Save this article

A comprehensive review of renewable and sustainable biosourced carbon through pyrolysis in biocomposites uses: Current development and future opportunity

Author

Listed:
  • Chang, Boon Peng
  • Rodriguez-Uribe, Arturo
  • Mohanty, Amar K.
  • Misra, Manjusri

Abstract

Highly order-structured carbon-based materials such as graphite, graphene, and carbon nanotubes hold promise in delivering the next generation of carbon-based advanced composite materials due to their superior performance in many applications. Recently, partially graphitic biosourced carbon (BioC) has shown to be a new, sustainable, inexpensive and practical alternative carbonaceous functional filler for polymer and biocomposite development (i.e. thermoplastic, thermoset, elastomer and foam). The thermochemical conversion of different types of biomass in a limited oxygen environment (pyrolysis) can be controlled and optimized to produce engineered BioCs with tunable surface area, morphology, polarity, porosity, intrinsic modulus and carbon content, which are being explored in different applications. Renewable BioCs exhibit variable surface chemistry that can be further modified to achieve better compatibility with polymers. BioC can be used as a reinforcing agent and as a multi-functional filler (e.g. electrical conductivity, antimicrobial, fire retardant, etc.) for polymer composite uses, which opens a new generation of biobased composite materials in the commercial market. This article provides an in-depth review of the current state-of-the-art fabrication, characterization, and performance of the BioC-based biocomposites. Further, the effect of the different synthesized BioCs on the polymers’ behavior and performance are reviewed in-depth. Finally, the challenges and future perspectives for these BioC-based biocomposites are discussed.

Suggested Citation

  • Chang, Boon Peng & Rodriguez-Uribe, Arturo & Mohanty, Amar K. & Misra, Manjusri, 2021. "A comprehensive review of renewable and sustainable biosourced carbon through pyrolysis in biocomposites uses: Current development and future opportunity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
  • Handle: RePEc:eee:rensus:v:152:y:2021:i:c:s1364032121009412
    DOI: 10.1016/j.rser.2021.111666
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121009412
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111666?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Azzaz, Ahmed Amine & Khiari, Besma & Jellali, Salah & Ghimbeu, Camélia Matei & Jeguirim, Mejdi, 2020. "Hydrochars production, characterization and application for wastewater treatment: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    2. Duy X. Luong & Ksenia V. Bets & Wala Ali Algozeeb & Michael G. Stanford & Carter Kittrell & Weiyin Chen & Rodrigo V. Salvatierra & Muqing Ren & Emily A. McHugh & Paul A. Advincula & Zhe Wang & Mahesh , 2020. "Gram-scale bottom-up flash graphene synthesis," Nature, Nature, vol. 577(7792), pages 647-651, January.
    3. Thines, K.R. & Abdullah, E.C. & Mubarak, N.M. & Ruthiraan, M., 2017. "Synthesis of magnetic biochar from agricultural waste biomass to enhancing route for waste water and polymer application: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 257-276.
    4. Afolabi, Oluwasola O.D. & Sohail, M. & Cheng, Yu-Ling, 2020. "Optimisation and characterisation of hydrochar production from spent coffee grounds by hydrothermal carbonisation," Renewable Energy, Elsevier, vol. 147(P1), pages 1380-1391.
    5. Tripathi, Manoj & Sahu, J.N. & Ganesan, P., 2016. "Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 467-481.
    6. Johannes Lehmann & John Gaunt & Marco Rondon, 2006. "Bio-char Sequestration in Terrestrial Ecosystems – A Review," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 11(2), pages 395-419, March.
    7. Wang, Tengfei & Zhai, Yunbo & Zhu, Yun & Li, Caiting & Zeng, Guangming, 2018. "A review of the hydrothermal carbonization of biomass waste for hydrochar formation: Process conditions, fundamentals, and physicochemical properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 223-247.
    8. Kambo, Harpreet Singh & Dutta, Animesh, 2015. "A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 359-378.
    9. Roy, Poritosh & Dutta, Animesh & Gallant, Jim, 2020. "Evaluation of the life cycle of hydrothermally carbonized biomass for energy and horticulture application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    10. Alhashimi, Hashim A. & Aktas, Can B., 2017. "Life cycle environmental and economic performance of biochar compared with activated carbon: A meta-analysis," Resources, Conservation & Recycling, Elsevier, vol. 118(C), pages 13-26.
    11. Carlos A. Diaz & Rahul Ketan Shah & Tyler Evans & Thomas A. Trabold & Kathleen Draper, 2020. "Thermoformed Containers Based on Starch and Starch/Coffee Waste Biochar Composites," Energies, MDPI, vol. 13(22), pages 1-9, November.
    12. Cuong, Dinh Viet & Matsagar, Babasaheb M. & Lee, Mengshan & Hossain, Md. Shahriar A. & Yamauchi, Yusuke & Vithanage, Meththika & Sarkar, Binoy & Ok, Yong Sik & Wu, Kevin C.-W. & Hou, Chia-Hung, 2021. "A critical review on biochar-based engineered hierarchical porous carbon for capacitive charge storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    13. Qian, Kezhen & Kumar, Ajay & Zhang, Hailin & Bellmer, Danielle & Huhnke, Raymond, 2015. "Recent advances in utilization of biochar," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1055-1064.
    14. Shun Zhang & Shun-Feng Jiang & Bao-Cheng Huang & Xian-Cheng Shen & Wen-Jing Chen & Tian-Pei Zhou & Hui-Yuan Cheng & Bin-Hai Cheng & Chang-Zheng Wu & Wen-Wei Li & Hong Jiang & Han-Qing Yu, 2020. "Sustainable production of value-added carbon nanomaterials from biomass pyrolysis," Nature Sustainability, Nature, vol. 3(9), pages 753-760, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kung, Chih-Chun & Fei, Chengcheng J. & McCarl, Bruce A. & Fan, Xinxin, 2022. "A review of biopower and mitigation potential of competing pyrolysis methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.
    2. Li, Shuangjun & Yuan, Xiangzhou & Deng, Shuai & Zhao, Li & Lee, Ki Bong, 2021. "A review on biomass-derived CO2 adsorption capture: Adsorbent, adsorber, adsorption, and advice," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    3. Qin, Fanzhi & Zhang, Chen & Zeng, Guangming & Huang, Danlian & Tan, Xiaofei & Duan, Abing, 2022. "Lignocellulosic biomass carbonization for biochar production and characterization of biochar reactivity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    4. Leslie Lara-Ramos & Ana Cervera-Mata & Jesús Fernández-Bayo & Miguel Navarro-Alarcón & Gabriel Delgado & Alejandro Fernández-Arteaga, 2023. "Hydrochars Derived from Spent Coffee Grounds as Zn Bio-Chelates for Agronomic Biofortification," Sustainability, MDPI, vol. 15(13), pages 1-13, July.
    5. Kung, Chih-Chun & Mu, Jianhong E., 2019. "Prospect of China's renewable energy development from pyrolysis and biochar applications under climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    6. Anand, Abhijeet & Kumar, Vivek & Kaushal, Priyanka, 2022. "Biochar and its twin benefits: Crop residue management and climate change mitigation in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    7. Djandja, Oraléou Sangué & Duan, Pei-Gao & Yin, Lin-Xin & Wang, Zhi-Cong & Duo, Jia, 2021. "A novel machine learning-based approach for prediction of nitrogen content in hydrochar from hydrothermal carbonization of sewage sludge," Energy, Elsevier, vol. 232(C).
    8. Song, Jinghui & Wang, Ying & Zhang, Siqi & Song, Yanling & Xue, Shengrong & Liu, Le & Lvy, Xingang & Wang, Xiaojiao & Yang, Gaihe, 2021. "Coupling biochar with anaerobic digestion in a circular economy perspective: A promising way to promote sustainable energy, environment and agriculture development in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    9. Yuan, Xiangzhou & Wang, Junyao & Deng, Shuai & Suvarna, Manu & Wang, Xiaonan & Zhang, Wei & Hamilton, Sara Triana & Alahmed, Ammar & Jamal, Aqil & Park, Ah-Hyung Alissa & Bi, Xiaotao & Ok, Yong Sik, 2022. "Recent advancements in sustainable upcycling of solid waste into porous carbons for carbon dioxide capture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    10. Shukla, Parul & Giri, Balendu Shekhar & Mishra, Rakesh K. & Pandey, Ashok & Chaturvedi, Preeti, 2021. "Lignocellulosic biomass-based engineered biochar composites: A facile strategy for abatement of emerging pollutants and utilization in industrial applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    11. Sooraj Kumar & Suhail Ahmed Soomro & Khanji Harijan & Mohammad Aslam Uqaili & Laveet Kumar, 2023. "Advancements of Biochar-Based Catalyst for Improved Production of Biodiesel: A Comprehensive Review," Energies, MDPI, vol. 16(2), pages 1-20, January.
    12. Śliz, Maciej & Wilk, Małgorzata, 2020. "A comprehensive investigation of hydrothermal carbonization: Energy potential of hydrochar derived from Virginia mallow," Renewable Energy, Elsevier, vol. 156(C), pages 942-950.
    13. Aragón-Briceño, C.I. & Pozarlik, A.K. & Bramer, E.A. & Niedzwiecki, Lukasz & Pawlak-Kruczek, H. & Brem, G., 2021. "Hydrothermal carbonization of wet biomass from nitrogen and phosphorus approach: A review," Renewable Energy, Elsevier, vol. 171(C), pages 401-415.
    14. Baghel, Paramjeet & Sakhiya, Anil Kumar & Kaushal, Priyanka, 2022. "Influence of temperature on slow pyrolysis of Prosopis Juliflora: An experimental and thermodynamic approach," Renewable Energy, Elsevier, vol. 185(C), pages 538-551.
    15. Neel Patel & Bishnu Acharya & Prabir Basu, 2021. "Hydrothermal Carbonization (HTC) of Seaweed (Macroalgae) for Producing Hydrochar," Energies, MDPI, vol. 14(7), pages 1-16, March.
    16. Surup, Gerrit Ralf & Leahy, James J. & Timko, Michael T. & Trubetskaya, Anna, 2020. "Hydrothermal carbonization of olive wastes to produce renewable, binder-free pellets for use as metallurgical reducing agents," Renewable Energy, Elsevier, vol. 155(C), pages 347-357.
    17. Bonassa, Gabriela & Schneider, Lara Talita & Canever, Victor Bruno & Cremonez, Paulo André & Frigo, Elisandro Pires & Dieter, Jonathan & Teleken, Joel Gustavo, 2018. "Scenarios and prospects of solid biofuel use in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2365-2378.
    18. Cheng, Chen & Ding, Lu & Guo, Qinghua & He, Qing & Gong, Yan & Alexander, Kozlov N. & Yu, Guangsuo, 2022. "Process analysis and kinetic modeling of coconut shell hydrothermal carbonization," Applied Energy, Elsevier, vol. 315(C).
    19. Shi, Xiaogang & Ronsse, Frederik & Nachenius, Robert & Pieters, Jan G., 2019. "3D Eulerian-Eulerian modeling of a screw reactor for biomass thermochemical conversion. Part 2: Slow pyrolysis for char production," Renewable Energy, Elsevier, vol. 143(C), pages 1477-1487.
    20. Zhuang, Xiuzheng & Liu, Jianguo & Zhang, Qi & Wang, Chenguang & Zhan, Hao & Ma, Longlong, 2022. "A review on the utilization of industrial biowaste via hydrothermal carbonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:152:y:2021:i:c:s1364032121009412. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.