IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i18p4694-d410924.html
   My bibliography  Save this article

Experimental Study on the Solids Residence Time Distribution in Multiple Square-Based Spouted Beds

Author

Listed:
  • Filippo Marchelli

    (Faculty of Science and Technology, Free University of Bozen-Bolzano, 39100 Bozen-Bolzano, Italy)

  • Massimo Curti

    (Department of Civil, Chemical and Environmental Engineering, University of Genova, 16126 Genova, Italy)

  • Mattia Tognin

    (Department of Civil, Chemical and Environmental Engineering, University of Genova, 16126 Genova, Italy)

  • Giorgio Rovero

    (Department of Civil, Chemical and Environmental Engineering, University of Genova, 16126 Genova, Italy)

  • Cristina Moliner

    (Department of Civil, Chemical and Environmental Engineering, University of Genova, 16126 Genova, Italy)

  • Elisabetta Arato

    (Department of Civil, Chemical and Environmental Engineering, University of Genova, 16126 Genova, Italy)

  • Barbara Bosio

    (Department of Civil, Chemical and Environmental Engineering, University of Genova, 16126 Genova, Italy)

Abstract

The present work aims at investigating the residence time distribution (RTD) of a multiple spouted bed reactor, which will be applied for the pyrolysis and gasification of residual biomass. The unit is composed of square-based spouted beds, placed in series and at descending heights, and communicating with each other through an opening in the lateral wall. The gas is fed evenly in parallel. The experimental analysis is based on tracer experiments in cold-flow units, assessing the influence of the number of units and the bed height. The tests proved the good mixing properties of the spouted beds, which create a stable fluidization regime and do not feature dead zones. Each spouted bed can generally be well assimilated to an ideal continuous stirred tank reactor (CSTR). The RTD of the device seems adequate for the application, and also seems to be well tuneable through the selection of the bed height and number of units. Given the good similarity with ideal reactor networks, these represent a valid tool to estimate the final behavior in terms of RTD.

Suggested Citation

  • Filippo Marchelli & Massimo Curti & Mattia Tognin & Giorgio Rovero & Cristina Moliner & Elisabetta Arato & Barbara Bosio, 2020. "Experimental Study on the Solids Residence Time Distribution in Multiple Square-Based Spouted Beds," Energies, MDPI, vol. 13(18), pages 1-13, September.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4694-:d:410924
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/18/4694/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/18/4694/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cristina Moliner & Filippo Marchelli & Barbara Bosio & Elisabetta Arato, 2017. "Modelling of Spouted and Spout-Fluid Beds: Key for Their Successful Scale Up," Energies, MDPI, vol. 10(11), pages 1-39, October.
    2. Tripathi, Manoj & Sahu, J.N. & Ganesan, P., 2016. "Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 467-481.
    3. Kan, Tao & Strezov, Vladimir & Evans, Tim J., 2016. "Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1126-1140.
    4. Alvarez, J. & Lopez, G. & Amutio, M. & Mkhize, N.M. & Danon, B. & van der Gryp, P. & Görgens, J.F. & Bilbao, J. & Olazar, M., 2017. "Evaluation of the properties of tyre pyrolysis oils obtained in a conical spouted bed reactor," Energy, Elsevier, vol. 128(C), pages 463-474.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carlos Vargas-Salgado & Elías Hurtado-Pérez & David Alfonso-Solar & Anders Malmquist, 2021. "Empirical Design, Construction, and Experimental Test of a Small-Scale Bubbling Fluidized Bed Reactor," Sustainability, MDPI, vol. 13(3), pages 1-22, January.
    2. Filippo Marchelli & Giorgio Rovero & Massimo Curti & Elisabetta Arato & Barbara Bosio & Cristina Moliner, 2021. "An Integrated Approach to Convert Lignocellulosic and Wool Residues into Balanced Fertilisers," Energies, MDPI, vol. 14(2), pages 1-15, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arabiourrutia, Miriam & Lopez, Gartzen & Artetxe, Maite & Alvarez, Jon & Bilbao, Javier & Olazar, Martin, 2020. "Waste tyre valorization by catalytic pyrolysis – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    2. Primaz, Carmem T. & Ribes-Greus, Amparo & Jacques, Rosângela A., 2021. "Valorization of cotton residues for production of bio-oil and engineered biochar," Energy, Elsevier, vol. 235(C).
    3. Qin, Fanzhi & Zhang, Chen & Zeng, Guangming & Huang, Danlian & Tan, Xiaofei & Duan, Abing, 2022. "Lignocellulosic biomass carbonization for biochar production and characterization of biochar reactivity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    4. Andrew N. Amenaghawon & Chinedu L. Anyalewechi & Charity O. Okieimen & Heri Septya Kusuma, 2021. "Biomass pyrolysis technologies for value-added products: a state-of-the-art review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14324-14378, October.
    5. Baghel, Paramjeet & Sakhiya, Anil Kumar & Kaushal, Priyanka, 2022. "Influence of temperature on slow pyrolysis of Prosopis Juliflora: An experimental and thermodynamic approach," Renewable Energy, Elsevier, vol. 185(C), pages 538-551.
    6. Javier Fermoso & Patricia Pizarro & Juan M. Coronado & David P. Serrano, 2017. "Advanced biofuels production by upgrading of pyrolysis bio‐oil," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 6(4), July.
    7. Cortazar, M. & Lopez, G. & Alvarez, J. & Amutio, M. & Bilbao, J. & Olazar, M., 2018. "Advantages of confining the fountain in a conical spouted bed reactor for biomass steam gasification," Energy, Elsevier, vol. 153(C), pages 455-463.
    8. Bhoi, P.R. & Ouedraogo, A.S. & Soloiu, V. & Quirino, R., 2020. "Recent advances on catalysts for improving hydrocarbon compounds in bio-oil of biomass catalytic pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    9. Li, Shuangjun & Yuan, Xiangzhou & Deng, Shuai & Zhao, Li & Lee, Ki Bong, 2021. "A review on biomass-derived CO2 adsorption capture: Adsorbent, adsorber, adsorption, and advice," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    10. Alexandre Tisserant & Francesco Cherubini, 2019. "Potentials, Limitations, Co-Benefits, and Trade-Offs of Biochar Applications to Soils for Climate Change Mitigation," Land, MDPI, vol. 8(12), pages 1-34, November.
    11. Tayibi, S. & Monlau, F. & Bargaz, A. & Jimenez, R. & Barakat, A., 2021. "Synergy of anaerobic digestion and pyrolysis processes for sustainable waste management: A critical review and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    12. Filippo Marchelli & Giorgio Rovero & Massimo Curti & Elisabetta Arato & Barbara Bosio & Cristina Moliner, 2021. "An Integrated Approach to Convert Lignocellulosic and Wool Residues into Balanced Fertilisers," Energies, MDPI, vol. 14(2), pages 1-15, January.
    13. Mohsin Raza & Abrar Inayat & Ashfaq Ahmed & Farrukh Jamil & Chaouki Ghenai & Salman R. Naqvi & Abdallah Shanableh & Muhammad Ayoub & Ammara Waris & Young-Kwon Park, 2021. "Progress of the Pyrolyzer Reactors and Advanced Technologies for Biomass Pyrolysis Processing," Sustainability, MDPI, vol. 13(19), pages 1-42, October.
    14. Naqvi, Salman Raza & Jamshaid, Sana & Naqvi, Muhammad & Farooq, Wasif & Niazi, Muhammad Bilal Khan & Aman, Zaeem & Zubair, Muhammad & Ali, Majid & Shahbaz, Muhammad & Inayat, Abrar & Afzal, Waheed, 2018. "Potential of biomass for bioenergy in Pakistan based on present case and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1247-1258.
    15. Lee, Seokhwan & Woo, Sang Hee & Kim, Yongrae & Choi, Young & Kang, Kernyong, 2020. "Combustion and emission characteristics of a diesel-powered generator running with N-butanol/coffee ground pyrolysis oil/diesel blended fuel," Energy, Elsevier, vol. 206(C).
    16. JoungDu Shin & SangWon Park & Changyoon Jeong, 2020. "Assessment of Agro-Environmental Impacts for Supplemented Methods to Biochar Manure Pellets during Rice ( Oryza sativa L.) Cultivation," Energies, MDPI, vol. 13(8), pages 1-14, April.
    17. Yang, Yuhan & Wang, Tiancheng & Hu, Hongyun & Yao, Dingding & Zou, Chan & Xu, Kai & Li, Xian & Yao, Hong, 2021. "Influence of partial components removal on pyrolysis behavior of lignocellulosic biowaste in molten salts," Renewable Energy, Elsevier, vol. 180(C), pages 616-625.
    18. Liu, Zhongzhe & Singer, Simcha & Tong, Yiran & Kimbell, Lee & Anderson, Erik & Hughes, Matthew & Zitomer, Daniel & McNamara, Patrick, 2018. "Characteristics and applications of biochars derived from wastewater solids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 650-664.
    19. Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.
    20. Kumar N, Sasi & Grekov, Denys & Pré, Pascaline & Alappat, Babu J., 2020. "Microwave mode of heating in the preparation of porous carbon materials for adsorption and energy storage applications – An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4694-:d:410924. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.