My bibliography
Save this item
Upgrading biomass fuels via wet torrefaction: A review and comparison with dry torrefaction
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Bach, Quang-Vu & Skreiberg, Øyvind & Lee, Chul-Jin, 2017. "Process modeling and optimization for torrefaction of forest residues," Energy, Elsevier, vol. 138(C), pages 348-354.
- Kostyniuk, Andrii & Likozar, Blaž, 2024. "Wet torrefaction of biomass waste into value-added liquid product (5-HMF) and high quality solid fuel (hydrochar) in a nitrogen atmosphere," Renewable Energy, Elsevier, vol. 226(C).
- Reyes, Y.A. & Pérez, M. & Barrera, E.L. & Martínez, Y. & Cheng, K.K., 2022. "Thermochemical conversion processes of Dichrostachys cinerea as a biofuel: A review of the Cuban case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
- Neves, Renato Cruz & Klein, Bruno Colling & da Silva, Ricardo Justino & Rezende, Mylene Cristina Alves Ferreira & Funke, Axel & Olivarez-Gómez, Edgardo & Bonomi, Antonio & Maciel-Filho, Rubens, 2020. "A vision on biomass-to-liquids (BTL) thermochemical routes in integrated sugarcane biorefineries for biojet fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
- Zhang, Deli & Wang, Fang & Shen, Xiuli & Yi, Weiming & Li, Zhihe & Li, Yongjun & Tian, Chunyan, 2018. "Comparison study on fuel properties of hydrochars produced from corn stalk and corn stalk digestate," Energy, Elsevier, vol. 165(PB), pages 527-536.
- Gan, Yong Yang & Ong, Hwai Chyuan & Ling, Tau Chuan & Chen, Wei-Hsin & Chong, Cheng Tung, 2019. "Torrefaction of de-oiled Jatropha seed kernel biomass for solid fuel production," Energy, Elsevier, vol. 170(C), pages 367-374.
- José Airton de Mattos Carneiro-Junior & Giulyane Felix de Oliveira & Carine Tondo Alves & Heloysa Martins Carvalho Andrade & Silvio Alexandre Beisl Vieira de Melo & Ednildo Andrade Torres, 2021. "Valorization of Prosopis juliflora Woody Biomass in Northeast Brazilian through Dry Torrefaction," Energies, MDPI, vol. 14(12), pages 1-17, June.
- Jae-Hyun Park & Young-Chan Choi & Young-Joo Lee & Hyung-Taek Kim, 2020. "Characteristics of Miscanthus Fuel by Wet Torrefaction on Fuel Upgrading and Gas Emission Behavior," Energies, MDPI, vol. 13(10), pages 1-10, May.
- Barskov, Stan & Zappi, Mark & Buchireddy, Prashanth & Dufreche, Stephen & Guillory, John & Gang, Daniel & Hernandez, Rafael & Bajpai, Rakesh & Baudier, Jeff & Cooper, Robbyn & Sharp, Richard, 2019. "Torrefaction of biomass: A review of production methods for biocoal from cultured and waste lignocellulosic feedstocks," Renewable Energy, Elsevier, vol. 142(C), pages 624-642.
- Jiang, Chunlong & Lin, Qizhao & Wang, Chengxin & Jiang, Xuedan & Bi, Haobo & Bao, Lin, 2020. "Experimental study of the ignition and combustion characteristics of cattle manure under different environmental conditions," Energy, Elsevier, vol. 197(C).
- Lu, Zhaolin & Xie, Tao & Chen, Hao & Li, Leida & Li, Shiyin & Lu, Yao & Hu, Xiaojuan, 2020. "Evaluation of effects of freezing pretreatment on the grindability, energy consumption and chemical composition of wheat straw," Renewable Energy, Elsevier, vol. 151(C), pages 21-29.
- Dimitrios K. Sidiras & Antonios G. Nazos & Georgios E. Giakoumakis & Dorothea V. Politi, 2020. "Simulating the Effect of Torrefaction on the Heating Value of Barley Straw," Energies, MDPI, vol. 13(3), pages 1-15, February.
- Wang, Shule & Wen, Yuming & Hammarström, Henry & Jönsson, Pär Göran & Yang, Weihong, 2021. "Pyrolysis behaviour, kinetics and thermodynamic data of hydrothermal carbonization–Treated pulp and paper mill sludge," Renewable Energy, Elsevier, vol. 177(C), pages 1282-1292.
- Singh, Satyansh & Chakraborty, Jyoti Prasad & Mondal, Monoj Kumar, 2020. "Torrefaction of woody biomass (Acacia nilotica): Investigation of fuel and flow properties to study its suitability as a good quality solid fuel," Renewable Energy, Elsevier, vol. 153(C), pages 711-724.
- Surup, Gerrit Ralf & Leahy, James J. & Timko, Michael T. & Trubetskaya, Anna, 2020. "Hydrothermal carbonization of olive wastes to produce renewable, binder-free pellets for use as metallurgical reducing agents," Renewable Energy, Elsevier, vol. 155(C), pages 347-357.
- Wang, Wenyu & Wen, Chang & Liu, Tianyu & Li, Changkang & Chen, Lichun & Wu, Jianqun & Shao, Yuhao & Liu, Enze, 2020. "Effects of various occurrence modes of inorganic components on the emissions of PM10 during torrefied biomass combustion under air and oxy-fuel conditions," Applied Energy, Elsevier, vol. 259(C).
- Johanna Gaitán-Álvarez & Róger Moya & Allen Puente-Urbina & Ana Rodriguez-Zúñiga, 2018. "Thermogravimetric, Devolatilization Rate, and Differential Scanning Calorimetry Analyses of Biomass of Tropical Plantation Species of Costa Rica Torrefied at Different Temperatures and Times," Energies, MDPI, vol. 11(4), pages 1-26, March.
- Kostas, Emily T. & Beneroso, Daniel & Robinson, John P., 2017. "The application of microwave heating in bioenergy: A review on the microwave pre-treatment and upgrading technologies for biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 12-27.
- Jaime Martín-Pascual & Joaquín Jódar & Miguel L. Rodríguez & Montserrat Zamorano, 2020. "Determination of the Optimal Operative Conditions for the Torrefaction of Olive Waste Biomass," Sustainability, MDPI, vol. 12(16), pages 1-11, August.
- Wang, L. & Barta-Rajnai, E. & Skreiberg, Ø. & Khalil, R. & Czégény, Z. & Jakab, E. & Barta, Z. & Grønli, M., 2018. "Effect of torrefaction on physiochemical characteristics and grindability of stem wood, stump and bark," Applied Energy, Elsevier, vol. 227(C), pages 137-148.
- Chai, Meiyun & Xie, Li & Yu, Xi & Zhang, Xingguang & Yang, Yang & Rahman, Md. Maksudur & Blanco, Paula H. & Liu, Ronghou & Bridgwater, Anthony V. & Cai, Junmeng, 2021. "Poplar wood torrefaction: Kinetics, thermochemistry and implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
- Anna Partridge & Ekaterina Sermyagina & Esa Vakkilainen, 2020. "Impact of Pretreatment on Hydrothermally Carbonized Spruce," Energies, MDPI, vol. 13(11), pages 1-13, June.
- Arkadiusz Dyjakon & Tomasz Noszczyk, 2020. "Alternative Fuels from Forestry Biomass Residue: Torrefaction Process of Horse Chestnuts, Oak Acorns, and Spruce Cones," Energies, MDPI, vol. 13(10), pages 1-19, May.
- Ong, Hwai Chyuan & Yu, Kai Ling & Chen, Wei-Hsin & Pillejera, Ma Katreena & Bi, Xiaotao & Tran, Khanh-Quang & Pétrissans, Anelie & Pétrissans, Mathieu, 2021. "Variation of lignocellulosic biomass structure from torrefaction: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
- He, Chao & Tang, Chunyan & Li, Chuanhao & Yuan, Jihui & Tran, Khanh-Quang & Bach, Quang-Vu & Qiu, Rongliang & Yang, Yanhui, 2018. "Wet torrefaction of biomass for high quality solid fuel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 259-271.
- Oumer, A.N. & Hasan, M.M. & Baheta, Aklilu Tesfamichael & Mamat, Rizalman & Abdullah, A.A., 2018. "Bio-based liquid fuels as a source of renewable energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 82-98.
- Bonassa, Gabriela & Schneider, Lara Talita & Canever, Victor Bruno & Cremonez, Paulo André & Frigo, Elisandro Pires & Dieter, Jonathan & Teleken, Joel Gustavo, 2018. "Scenarios and prospects of solid biofuel use in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2365-2378.
- Gangil, Sandip & Bhargav, Vinod Kumar, 2018. "Influence of torrefaction on intrinsic bioconstituents of cotton stalk: TG-insights," Energy, Elsevier, vol. 142(C), pages 1066-1073.
- Abdulyekeen, Kabir Abogunde & Umar, Ahmad Abulfathi & Patah, Muhamad Fazly Abdul & Daud, Wan Mohd Ashri Wan, 2021. "Torrefaction of biomass: Production of enhanced solid biofuel from municipal solid waste and other types of biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
- Paweł Stępień & Kacper Świechowski & Martyna Hnat & Szymon Kugler & Sylwia Stegenta-Dąbrowska & Jacek A. Koziel & Piotr Manczarski & Andrzej Białowiec, 2019. "Waste to Carbon: Biocoal from Elephant Dung as New Cooking Fuel," Energies, MDPI, vol. 12(22), pages 1-32, November.
- Dai, Leilei & Wang, Yunpu & Liu, Yuhuan & Ruan, Roger & He, Chao & Yu, Zhenting & Jiang, Lin & Zeng, Zihong & Tian, Xiaojie, 2019. "Integrated process of lignocellulosic biomass torrefaction and pyrolysis for upgrading bio-oil production: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 20-36.
- Kartal, Furkan & Özveren, Uğur, 2022. "Prediction of torrefied biomass properties from raw biomass," Renewable Energy, Elsevier, vol. 182(C), pages 578-591.
- Yin, Chungen, 2020. "Development in biomass preparation for suspension firing towards higher biomass shares and better boiler performance and fuel rangeability," Energy, Elsevier, vol. 196(C).
- Liu, Tianyu & Wen, Chang & Li, Changkang & Yan, Kai & Li, Rui & Jing, Zhenqi & Zhang, Bohan & Ma, Jingjing, 2022. "Integrated water washing and carbonization pretreatment of typical herbaceous and woody biomass: Fuel properties, combustion behaviors, and techno-economic assessments," Renewable Energy, Elsevier, vol. 200(C), pages 218-233.
- Bach, Quang-Vu & Tran, Khanh-Quang & Skreiberg, Øyvind, 2017. "Combustion kinetics of wet-torrefied forest residues using the distributed activation energy model (DAEM)," Applied Energy, Elsevier, vol. 185(P2), pages 1059-1066.
- Ignacio, Luís Henrique da Silva & Santos, Pedro Eduardo de Almeida & Duarte, Carlos Antonio Ribeiro, 2019. "An experimental assessment of Eucalyptus urosemente energy potential for biomass production in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 361-369.
- Gan, Yong Yang & Chen, Wei-Hsin & Ong, Hwai Chyuan & Sheen, Herng-Kuang & Chang, Jo-Shu & Hsieh, Tzu-Hsien & Ling, Tau Chuan, 2020. "Effects of dry and wet torrefaction pretreatment on microalgae pyrolysis analyzed by TG-FTIR and double-shot Py-GC/MS," Energy, Elsevier, vol. 210(C).
- Zheng, Kaiyue & Han, Hengda & Hu, Song & Ren, Qiangqiang & Su, Sheng & Wang, Yi & Jiang, Long & Xu, Jun & Li, Hanjian & Tong, Yuxing & Xiang, Jun, 2023. "Upgrading biomass waste to bio-coking coal by pressurized torrefaction: Synergistic effect between corncob and lignin," Energy, Elsevier, vol. 267(C).
- Imtiaz Anando, Ahmed & Ehsan, M Monjurul & Karim, Md Rezwanul & Bhuiyan, Arafat A. & Ahiduzzaman, Md & Karim, Azharul, 2023. "Thermochemical pretreatments to improve the fuel properties of rice husk: A review," Renewable Energy, Elsevier, vol. 215(C).
- Antonios Nazos & Panagiotis Grammelis & Elias Sakellis & Dimitrios Sidiras, 2020. "Acid-Catalyzed Wet Torrefaction for Enhancing the Heating Value of Barley Straw," Energies, MDPI, vol. 13(7), pages 1-16, April.
- Bach, Quang-Vu & Tran, Khanh-Quang & Skreiberg, Øyvind, 2017. "Comparative study on the thermal degradation of dry- and wet-torrefied woods," Applied Energy, Elsevier, vol. 185(P2), pages 1051-1058.
- Jongkeun Lee & Oh Kyung Choi & Dooyoung Oh & Kawnyong Lee & Ki Young Park & Daegi Kim, 2020. "Stimulation of Lipid Extraction Efficiency from Sewage Sludge for Biodiesel Production through Hydrothermal Pretreatment," Energies, MDPI, vol. 13(23), pages 1-10, December.
- Chen, Wei-Hsin & Lo, Hsiu-Ju & Aniza, Ria & Lin, Bo-Jhih & Park, Young-Kwon & Kwon, Eilhann E. & Sheen, Herng-Kuang & Grafilo, Laumar Alan Dave R., 2022. "Forecast of glucose production from biomass wet torrefaction using statistical approach along with multivariate adaptive regression splines, neural network and decision tree," Applied Energy, Elsevier, vol. 324(C).
- Lasek, Janusz A. & Głód, Krzysztof & Słowik, Krzysztof, 2021. "The co-combustion of torrefied municipal solid waste and coal in bubbling fluidised bed combustor under atmospheric and elevated pressure," Renewable Energy, Elsevier, vol. 179(C), pages 828-841.
- Akbari, Maryam & Oyedun, Adetoyese Olajire & Kumar, Amit, 2020. "Techno-economic assessment of wet and dry torrefaction of biomass feedstock," Energy, Elsevier, vol. 207(C).
- Kumar, R. & Strezov, V., 2021. "Thermochemical production of bio-oil: A review of downstream processing technologies for bio-oil upgrading, production of hydrogen and high value-added products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
- Ke, Linyao & Wu, Qiuhao & Zhou, Nan & Xiong, Jianyun & Yang, Qi & Zhang, Letian & Wang, Yuanyuan & Dai, Leilei & Zou, Rongge & Liu, Yuhuan & Ruan, Roger & Wang, Yunpu, 2022. "Lignocellulosic biomass pyrolysis for aromatic hydrocarbons production: Pre and in-process enhancement methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
- Alam, Mahboob & Rammohan, Draksharapu & Peela, Nageswara Rao, 2021. "Catalytic co-pyrolysis of wet-torrefied bamboo sawdust and plastic over the zeolite H-ZSM-5: Synergistic effects and kinetics," Renewable Energy, Elsevier, vol. 178(C), pages 608-619.
- Sangjan, Amornrat & Ngamsiri, Pornthip & Klomkliang, Nikom & Wu, Kevin C.-W. & Matsagar, Babasaheb M. & Ratchahat, Sakhon & Liu, Chen-Guang & Laosiripojana, Navadol & Sakdaronnarong, Chularat, 2020. "Effect of microwave-assisted wet torrefaction on liquefaction of biomass from palm oil and sugarcane wastes to bio-oil and carbon nanodots/nanoflakes by hydrothermolysis and solvothermolysis," Renewable Energy, Elsevier, vol. 154(C), pages 1204-1217.
- da Silva, Carlos Miguel Simões & Carneiro, Angélica de Cássia Oliveira & Vital, Benedito Rocha & Figueiró, Clarissa Gusmão & Fialho, Lucas de Freitas & de Magalhães, Mateus Alves & Carvalho, Amélia Gu, 2018. "Biomass torrefaction for energy purposes – Definitions and an overview of challenges and opportunities in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2426-2432.
- Chen, Yun-Chun & Chen, Wei-Hsin & Lin, Bo-Jhih & Chang, Jo-Shu & Ong, Hwai Chyuan, 2016. "Impact of torrefaction on the composition, structure and reactivity of a microalga residue," Applied Energy, Elsevier, vol. 181(C), pages 110-119.