IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v177y2021icp1282-1292.html
   My bibliography  Save this article

Pyrolysis behaviour, kinetics and thermodynamic data of hydrothermal carbonization–Treated pulp and paper mill sludge

Author

Listed:
  • Wang, Shule
  • Wen, Yuming
  • Hammarström, Henry
  • Jönsson, Pär Göran
  • Yang, Weihong

Abstract

Organic-rich pulp and paper mill sludge (PPMS) has the potential to become a renewable carbon source for producing alternatives to fossil-based product. In this work, PPMS treated by hydrothermal carbonization (HTC) was investigated based on its pyrolysis properties. The pyrolytic mechanism, kinetics data and product of the sample were studied using TG as well as pyrolysis tests in Py-GC/MS and a bench-scale reactor at 450, 550, and 650 °C. The results show that the thermal decomposition of feedstock is a two-stage reaction. The mean activation energy of the pyrolysis of HTC treated PPMS was estimated as 233.08 kJ/mol, which is higher than that of the pyrolysis of paper sludge reported before. The changes in enthalpies, entropies and Gibbs free energies from the reactants to the activated complex were estimated. The concentration of monocyclic aromatic hydrocarbons in the derived organic liquid fraction shows a positive correlation with the pyrolysis temperature. At 550 °C, the organic liquid fraction reached its highest yield at 13.7% with an oxygen level of 10.7 wt% and a higher heating value of 35.9 MJ/kg. The pyrolytic chars show that a molar ratio of O:C is less than 0.2, which shows potential for use as a carbon sink.

Suggested Citation

  • Wang, Shule & Wen, Yuming & Hammarström, Henry & Jönsson, Pär Göran & Yang, Weihong, 2021. "Pyrolysis behaviour, kinetics and thermodynamic data of hydrothermal carbonization–Treated pulp and paper mill sludge," Renewable Energy, Elsevier, vol. 177(C), pages 1282-1292.
  • Handle: RePEc:eee:renene:v:177:y:2021:i:c:p:1282-1292
    DOI: 10.1016/j.renene.2021.06.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121008910
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.06.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gao, Ying & Wang, Xian-Hua & Yang, Hai-Ping & Chen, Han-Ping, 2012. "Characterization of products from hydrothermal treatments of cellulose," Energy, Elsevier, vol. 42(1), pages 457-465.
    2. Shahbeig, Hossein & Nosrati, Mohsen, 2020. "Pyrolysis of municipal sewage sludge for bioenergy production: Thermo-kinetic studies, evolved gas analysis, and techno-socio-economic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    3. Ali Mohammadi & Maria Sandberg & G. Venkatesh & Samieh Eskandari & Tommy Dalgaard & Stephen Joseph & Karin Granström, 2019. "Environmental analysis of producing biochar and energy recovery from pulp and paper mill biosludge," Journal of Industrial Ecology, Yale University, vol. 23(5), pages 1039-1051, October.
    4. Bach, Quang-Vu & Skreiberg, Øyvind, 2016. "Upgrading biomass fuels via wet torrefaction: A review and comparison with dry torrefaction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 665-677.
    5. Slopiecka, Katarzyna & Bartocci, Pietro & Fantozzi, Francesco, 2012. "Thermogravimetric analysis and kinetic study of poplar wood pyrolysis," Applied Energy, Elsevier, vol. 97(C), pages 491-497.
    6. Sophonrat, Nanta & Sandström, Linda & Zaini, Ilman Nuran & Yang, Weihong, 2018. "Stepwise pyrolysis of mixed plastics and paper for separation of oxygenated and hydrocarbon condensates," Applied Energy, Elsevier, vol. 229(C), pages 314-325.
    7. Yu, Yong Ho & Kim, Sang Done & Lee, Jong Min & Lee, Keun Hoo, 2002. "Kinetic studies of dehydration, pyrolysis and combustion of paper sludge," Energy, Elsevier, vol. 27(5), pages 457-469.
    8. Persson, H. & Han, T. & Sandström, L. & Xia, W. & Evangelopoulos, P. & Yang, W., 2018. "Fractionation of liquid products from pyrolysis of lignocellulosic biomass by stepwise thermal treatment," Energy, Elsevier, vol. 154(C), pages 346-351.
    9. Lou, Rui & Wu, Shubin & Lv, Gaojin & Yang, Qing, 2012. "Energy and resource utilization of deinking sludge pyrolysis," Applied Energy, Elsevier, vol. 90(1), pages 46-50.
    10. Naqvi, Salman Raza & Tariq, Rumaisa & Hameed, Zeeshan & Ali, Imtiaz & Naqvi, Muhammad & Chen, Wei-Hsin & Ceylan, Selim & Rashid, Harith & Ahmad, Junaid & Taqvi, Syed A. & Shahbaz, Muhammad, 2019. "Pyrolysis of high ash sewage sludge: Kinetics and thermodynamic analysis using Coats-Redfern method," Renewable Energy, Elsevier, vol. 131(C), pages 854-860.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Jun & Li, Chengyu & Yuan, Haoran & Chen, Yong, 2022. "Enhancement of aromatics production via cellulose fast pyrolysis over Ru modified hierarchical zeolites," Renewable Energy, Elsevier, vol. 184(C), pages 280-290.
    2. Cao, Yuhao & Liu, Yanxing & Li, Zhengyuan & Zong, Peiying & Hou, Jiachen & Zhang, Qiyan & Gou, Xiang, 2022. "Synergistic effect, kinetics, and pollutant emission characteristics of co-combustion of polymer-containing oily sludge and cornstalk using TGA and fixed-bed reactor," Renewable Energy, Elsevier, vol. 185(C), pages 748-758.
    3. Attasophonwattana, Patcharaporn & Sitthichirachat, Panawit & Siripaiboon, Chootrakul & Ketwong, Tulakarn & Khaobang, Chanoknunt & Panichnumsin, Pornpan & Ding, Lu & Areeprasert, Chinnathan, 2022. "Evolving circular economy in a palm oil factory: Integration of pilot-scale hydrothermal carbonization, gasification, and anaerobic digestion for valorization of empty fruit bunch," Applied Energy, Elsevier, vol. 324(C).
    4. Tharaka Rama Krishna C. Doddapaneni & Linnar Pärn & Timo Kikas, 2022. "Torrefaction of Pulp Industry Sludge to Enhance Its Fuel Characteristics," Energies, MDPI, vol. 15(17), pages 1-15, August.
    5. Jerzak, Wojciech & Wądrzyk, Mariusz & Kalemba-Rec, Izabela & Bieniek, Artur & Magdziarz, Aneta, 2023. "Release of chlorine during oat straw pyrolysis doped with char and ammonium chloride," Renewable Energy, Elsevier, vol. 215(C).
    6. Hatem Abushammala & Muhammad Adil Masood & Salma Taqi Ghulam & Jia Mao, 2023. "On the Conversion of Paper Waste and Rejects into High-Value Materials and Energy," Sustainability, MDPI, vol. 15(8), pages 1-21, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wen, Yuming & Zaini, Ilman Nuran & Wang, Shule & Mu, Wangzhong & Jönsson, Pär Göran & Yang, Weihong, 2021. "Synergistic effect of the co-pyrolysis of cardboard and polyethylene: A kinetic and thermodynamic study," Energy, Elsevier, vol. 229(C).
    2. Sharma, Ajay & Aravind Kumar, A. & Mohanty, Bikash & Sawarkar, Ashish N., 2023. "Critical insights into pyrolysis and co-pyrolysis of poplar and eucalyptus wood sawdust: Physico-chemical characterization, kinetic triplets, reaction mechanism, and thermodynamic analysis," Renewable Energy, Elsevier, vol. 210(C), pages 321-334.
    3. Park, Young-Kwon & Jung, Jaehun & Ryu, Sumin & Lee, Hyung Won & Siddiqui, Muhammad Zain & Jae, Jungho & Watanabe, Atsushi & Kim, Young-Min, 2019. "Catalytic co-pyrolysis of yellow poplar wood and polyethylene terephthalate over two stage calcium oxide-ZSM-5," Applied Energy, Elsevier, vol. 250(C), pages 1706-1718.
    4. Chen, Renjie & Yuan, Shijie & Wang, Xiankai & Dai, Xiaohu & Guo, Yali & Li, Chong & Wu, Haibin & Dong, Bin, 2023. "Mechanistic insight into the effect of hydrothermal treatment of sewage sludge on subsequent pyrolysis: Evolution of volatile and their interaction with pyrolysis kinetic and products compositions," Energy, Elsevier, vol. 266(C).
    5. Tianhao Shen & Fengxia Zhang & Shiliang Yang & Hua Wang & Jianhang Hu, 2023. "Investigation of Pyrolysis Kinetic Triplet, Thermodynamics, Product Characteristics and Reaction Mechanism of Waste Cooking Oil Biodiesel under the Influence of Copper Slag," Energies, MDPI, vol. 16(5), pages 1-22, February.
    6. Mohammad Ghorbani & Petr Konvalina & Anna Walkiewicz & Reinhard W. Neugschwandtner & Marek Kopecký & Kazem Zamanian & Wei-Hsin Chen & Daniel Bucur, 2022. "Feasibility of Biochar Derived from Sewage Sludge to Promote Sustainable Agriculture and Mitigate GHG Emissions—A Review," IJERPH, MDPI, vol. 19(19), pages 1-23, October.
    7. Ana B. Cuevas & David E. Leiva-Candia & M. P. Dorado, 2024. "An Overview of Pyrolysis as Waste Treatment to Produce Eco-Energy," Energies, MDPI, vol. 17(12), pages 1-32, June.
    8. Yang, Yantao & Qu, Xia & Huang, Guorun & Ren, Suxia & Dong, Lili & Sun, Tanglei & Liu, Peng & Li, Yanling & Lei, Tingzhou & Cai, Junmeng, 2023. "Insight into lignocellulosic biomass torrefaction kinetics with case study of pinewood sawdust torrefaction," Renewable Energy, Elsevier, vol. 215(C).
    9. Yang, Haiyue & Wang, Yazhou & Yu, Qianqian & Cao, Guoliang & Yang, Rue & Ke, Jiaona & Di, Xin & Liu, Feng & Zhang, Wenbo & Wang, Chengyu, 2018. "Composite phase change materials with good reversible thermochromic ability in delignified wood substrate for thermal energy storage," Applied Energy, Elsevier, vol. 212(C), pages 455-464.
    10. Jie Gu & Cheng Tung Chong & Guo Ren Mong & Jo-Han Ng & William Woei Fong Chong, 2023. "Determination of Pyrolysis and Kinetics Characteristics of Chicken Manure Using Thermogravimetric Analysis Coupled with Particle Swarm Optimization," Energies, MDPI, vol. 16(4), pages 1-22, February.
    11. Ali Mohammadi & G. Venkatesh & Maria Sandberg & Samieh Eskandari & Stephen Joseph & Karin Granström, 2020. "A Comprehensive Environmental Life Cycle Assessment of the Use of Hydrochar Pellets in Combined Heat and Power Plants," Sustainability, MDPI, vol. 12(21), pages 1-15, October.
    12. Gao, Pin & Zhou, Yiyuan & Meng, Fang & Zhang, Yihui & Liu, Zhenhong & Zhang, Wenqi & Xue, Gang, 2016. "Preparation and characterization of hydrochar from waste eucalyptus bark by hydrothermal carbonization," Energy, Elsevier, vol. 97(C), pages 238-245.
    13. Mei Yin Ong & Nor-Insyirah Syahira Abdul Latif & Hui Yi Leong & Bello Salman & Pau Loke Show & Saifuddin Nomanbhay, 2019. "Characterization and Analysis of Malaysian Macroalgae Biomass as Potential Feedstock for Bio-Oil Production," Energies, MDPI, vol. 12(18), pages 1-14, September.
    14. Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.
    15. Zaini, Ilman Nuran & Gomez-Rueda, Yamid & García López, Cristina & Ratnasari, Devy Kartika & Helsen, Lieve & Pretz, Thomas & Jönsson, Pär Göran & Yang, Weihong, 2020. "Production of H2-rich syngas from excavated landfill waste through steam co-gasification with biochar," Energy, Elsevier, vol. 207(C).
    16. Kumar, R. & Strezov, V., 2021. "Thermochemical production of bio-oil: A review of downstream processing technologies for bio-oil upgrading, production of hydrogen and high value-added products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    17. Chen, Lichun & Wen, Chang & Wang, Wenyu & Liu, Tianyu & Liu, Enze & Liu, Haowen & Li, Zexin, 2020. "Combustion behaviour of biochars thermally pretreated via torrefaction, slow pyrolysis, or hydrothermal carbonisation and co-fired with pulverised coal," Renewable Energy, Elsevier, vol. 161(C), pages 867-877.
    18. Neves, Renato Cruz & Klein, Bruno Colling & da Silva, Ricardo Justino & Rezende, Mylene Cristina Alves Ferreira & Funke, Axel & Olivarez-Gómez, Edgardo & Bonomi, Antonio & Maciel-Filho, Rubens, 2020. "A vision on biomass-to-liquids (BTL) thermochemical routes in integrated sugarcane biorefineries for biojet fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    19. Jiang, Chunlong & Lin, Qizhao & Wang, Chengxin & Jiang, Xuedan & Bi, Haobo & Bao, Lin, 2020. "Experimental study of the ignition and combustion characteristics of cattle manure under different environmental conditions," Energy, Elsevier, vol. 197(C).
    20. Ibrahim Shaba Mohammed & Risu Na & Keisuke Kushima & Naoto Shimizu, 2020. "Investigating the Effect of Processing Parameters on the Products of Hydrothermal Carbonization of Corn Stover," Sustainability, MDPI, vol. 12(12), pages 1-21, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:177:y:2021:i:c:p:1282-1292. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.