IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v267y2023ics0360544222034235.html
   My bibliography  Save this article

Upgrading biomass waste to bio-coking coal by pressurized torrefaction: Synergistic effect between corncob and lignin

Author

Listed:
  • Zheng, Kaiyue
  • Han, Hengda
  • Hu, Song
  • Ren, Qiangqiang
  • Su, Sheng
  • Wang, Yi
  • Jiang, Long
  • Xu, Jun
  • Li, Hanjian
  • Tong, Yuxing
  • Xiang, Jun

Abstract

Gas-pressurized torrefaction is efficient for upgrading biomass to substitute metallurgical coke. Herein, the effects of pressure and temperature on corncob torrefied products as well as the synergistic mechanism were investigated. The results indicated pressure facilitated secondary reactions that converted volatiles to fixed carbon. As the temperature increased to 280 °C from 180 °C under 3 MPa, the volatile content decreased from 82.72% to 48.71%, and the HHV improved from 16.14 MJ/kg to 28.60 MJ/kg, which were close to the quality of bituminous coal. Lignin was mixed with corncob to further improve the property of torrefied products. The fixed carbon of mixture semi-char increased by 11.28% compared to the theoretical value, the O/C and H/C ratios decreased to 0.18 and 0.74 respectively, reaching the quality of coking coal. The blending of lignin promoted the formation of water under subcritical conditions, accelerating biomass decomposition. Cross-interaction reactions among volatiles intensified the deoxygenation and more acetic acid was produced that promoted carbonization reactions, causing the removal of oxygen in the form of gas and a higher fixed carbon in the semi-char. The finding promoted biomass application in low-carbon iron production significantly by obtaining bio-coking coal.

Suggested Citation

  • Zheng, Kaiyue & Han, Hengda & Hu, Song & Ren, Qiangqiang & Su, Sheng & Wang, Yi & Jiang, Long & Xu, Jun & Li, Hanjian & Tong, Yuxing & Xiang, Jun, 2023. "Upgrading biomass waste to bio-coking coal by pressurized torrefaction: Synergistic effect between corncob and lignin," Energy, Elsevier, vol. 267(C).
  • Handle: RePEc:eee:energy:v:267:y:2023:i:c:s0360544222034235
    DOI: 10.1016/j.energy.2022.126536
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222034235
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.126536?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Wei-Hsin & Peng, Jianghong & Bi, Xiaotao T., 2015. "A state-of-the-art review of biomass torrefaction, densification and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 847-866.
    2. Zhang, Chenting & Chao, Li & Zhang, Zhanming & Zhang, Lijun & Li, Qingyin & Fan, Huailin & Zhang, Shu & Liu, Qing & Qiao, Yingyun & Tian, Yuanyu & Wang, Yi & Hu, Xun, 2021. "Pyrolysis of cellulose: Evolution of functionalities and structure of bio-char versus temperature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    3. Zhou, Di & Wei, Rufei & Long, Hongming & Li, Jiaxin & Qi, Liying & Xu, Chunbao Charles, 2020. "Combustion characteristics and kinetics of different food solid wastes treatment by blast furnace," Renewable Energy, Elsevier, vol. 145(C), pages 530-541.
    4. Mousa, Elsayed & Wang, Chuan & Riesbeck, Johan & Larsson, Mikael, 2016. "Biomass applications in iron and steel industry: An overview of challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1247-1266.
    5. Zhang, Wei & Zhang, Juhua & Xue, Zhengliang, 2017. "Exergy analyses of the oxygen blast furnace with top gas recycling process," Energy, Elsevier, vol. 121(C), pages 135-146.
    6. Toor, Saqib Sohail & Rosendahl, Lasse & Rudolf, Andreas, 2011. "Hydrothermal liquefaction of biomass: A review of subcritical water technologies," Energy, Elsevier, vol. 36(5), pages 2328-2342.
    7. Li, Chao & Sun, Yifan & Dong, Dehua & Gao, Guanggang & Zhang, Shu & Wang, Yi & Xiang, Jun & Hu, Song & Mortaza, Gholizadeh & Hu, Xun, 2021. "Co-pyrolysis of cellulose/lignin and sawdust: Influence of secondary condensation of the volatiles on characteristics of biochar," Energy, Elsevier, vol. 226(C).
    8. Aki Koskela & Hannu Suopajärvi & Olli Mattila & Juha Uusitalo & Timo Fabritius, 2019. "Lignin from Bioethanol Production as a Part of a Raw Material Blend of a Metallurgical Coke," Energies, MDPI, vol. 12(8), pages 1-19, April.
    9. Bach, Quang-Vu & Skreiberg, Øyvind, 2016. "Upgrading biomass fuels via wet torrefaction: A review and comparison with dry torrefaction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 665-677.
    10. Wei, Rufei & Zhang, Lingling & Cang, Daqiang & Li, Jiaxin & Li, Xianwei & Xu, Chunbao Charles, 2017. "Current status and potential of biomass utilization in ferrous metallurgical industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 511-524.
    11. Li, Chao & Sun, Yifan & Yi, Zijun & Zhang, Lijun & Zhang, Shu & Hu, Xun, 2022. "Co-pyrolysis of coke bottle wastes with cellulose, lignin and sawdust: Impacts of the mixed feedstock on char properties," Renewable Energy, Elsevier, vol. 181(C), pages 1126-1139.
    12. Liu, Lianzhi & Jiang, Zeyi & Zhang, Xinru & Lu, Yuanxiang & He, Junkai & Wang, Jingsong & Zhang, Xinxin, 2018. "Effects of top gas recycling on in-furnace status, productivity, and energy consumption of oxygen blast furnace," Energy, Elsevier, vol. 163(C), pages 144-150.
    13. Quader, M. Abdul & Ahmed, Shamsuddin & Ghazilla, Raja Ariffin Raja & Ahmed, Shameem & Dahari, Mahidzal, 2015. "A comprehensive review on energy efficient CO2 breakthrough technologies for sustainable green iron and steel manufacturing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 594-614.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dong, Xinyuan & Wang, Zhixing & Zhang, Junhong & Zhan, Wenlong & Gao, Lihua & He, Zhijun, 2024. "Synthesis and characteristics of carbon-based synfuel from biomass and coal powder by synergistic co-carbonization technology," Renewable Energy, Elsevier, vol. 227(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Qianqian & Gu, Yu & Tang, Zhiyong & Wei, Wei & Sun, Yuhan, 2018. "Assessment of low-carbon iron and steel production with CO2 recycling and utilization technologies: A case study in China," Applied Energy, Elsevier, vol. 220(C), pages 192-207.
    2. Jha, Gaurav & Soren, S., 2017. "Study on applicability of biomass in iron ore sintering process," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 399-407.
    3. Nwachukwu, Chinedu Maureen & Wang, Chuan & Wetterlund, Elisabeth, 2021. "Exploring the role of forest biomass in abating fossil CO2 emissions in the iron and steel industry – The case of Sweden," Applied Energy, Elsevier, vol. 288(C).
    4. Malico, Isabel & Nepomuceno Pereira, Ricardo & Gonçalves, Ana Cristina & Sousa, Adélia M.O., 2019. "Current status and future perspectives for energy production from solid biomass in the European industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 960-977.
    5. Suopajärvi, Hannu & Umeki, Kentaro & Mousa, Elsayed & Hedayati, Ali & Romar, Henrik & Kemppainen, Antti & Wang, Chuan & Phounglamcheik, Aekjuthon & Tuomikoski, Sari & Norberg, Nicklas & Andefors, Alf , 2018. "Use of biomass in integrated steelmaking – Status quo, future needs and comparison to other low-CO2 steel production technologies," Applied Energy, Elsevier, vol. 213(C), pages 384-407.
    6. Zola, Fernanda Cavicchioli & Colmenero, João Carlos & Aragão, Franciely Velozo & Rodrigues, Thaisa & Junior, Aldo Braghini, 2020. "Multicriterial model for selecting a charcoal kiln," Energy, Elsevier, vol. 190(C).
    7. Kumar, R. & Strezov, V., 2021. "Thermochemical production of bio-oil: A review of downstream processing technologies for bio-oil upgrading, production of hydrogen and high value-added products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    8. Jaime Martín-Pascual & Joaquín Jódar & Miguel L. Rodríguez & Montserrat Zamorano, 2020. "Determination of the Optimal Operative Conditions for the Torrefaction of Olive Waste Biomass," Sustainability, MDPI, vol. 12(16), pages 1-11, August.
    9. Chen, Yuxiang & Li, Chao & Zhang, Lijun & Zhang, Shu & Xiang, Jun & Hu, Song & Wang, Yi & Hu, Xun, 2024. "Varied directions of heat flow and emission of volatiles impact evolution of products in pyrolysis of wet and dry pine needles," Renewable Energy, Elsevier, vol. 226(C).
    10. Bonassa, Gabriela & Schneider, Lara Talita & Canever, Victor Bruno & Cremonez, Paulo André & Frigo, Elisandro Pires & Dieter, Jonathan & Teleken, Joel Gustavo, 2018. "Scenarios and prospects of solid biofuel use in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2365-2378.
    11. Uribe-Soto, Wilmar & Portha, Jean-François & Commenge, Jean-Marc & Falk, Laurent, 2017. "A review of thermochemical processes and technologies to use steelworks off-gases," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 809-823.
    12. Gangil, Sandip & Bhargav, Vinod Kumar, 2018. "Influence of torrefaction on intrinsic bioconstituents of cotton stalk: TG-insights," Energy, Elsevier, vol. 142(C), pages 1066-1073.
    13. Chen, Yun-Chun & Chen, Wei-Hsin & Lin, Bo-Jhih & Chang, Jo-Shu & Ong, Hwai Chyuan, 2016. "Impact of torrefaction on the composition, structure and reactivity of a microalga residue," Applied Energy, Elsevier, vol. 181(C), pages 110-119.
    14. José Airton de Mattos Carneiro-Junior & Giulyane Felix de Oliveira & Carine Tondo Alves & Heloysa Martins Carvalho Andrade & Silvio Alexandre Beisl Vieira de Melo & Ednildo Andrade Torres, 2021. "Valorization of Prosopis juliflora Woody Biomass in Northeast Brazilian through Dry Torrefaction," Energies, MDPI, vol. 14(12), pages 1-17, June.
    15. Bach, Quang-Vu & Skreiberg, Øyvind & Lee, Chul-Jin, 2017. "Process modeling and optimization for torrefaction of forest residues," Energy, Elsevier, vol. 138(C), pages 348-354.
    16. Barskov, Stan & Zappi, Mark & Buchireddy, Prashanth & Dufreche, Stephen & Guillory, John & Gang, Daniel & Hernandez, Rafael & Bajpai, Rakesh & Baudier, Jeff & Cooper, Robbyn & Sharp, Richard, 2019. "Torrefaction of biomass: A review of production methods for biocoal from cultured and waste lignocellulosic feedstocks," Renewable Energy, Elsevier, vol. 142(C), pages 624-642.
    17. Wang, L. & Barta-Rajnai, E. & Skreiberg, Ø. & Khalil, R. & Czégény, Z. & Jakab, E. & Barta, Z. & Grønli, M., 2018. "Effect of torrefaction on physiochemical characteristics and grindability of stem wood, stump and bark," Applied Energy, Elsevier, vol. 227(C), pages 137-148.
    18. Wang, Chunyan & Wang, Ranran & Hertwich, Edgar & Liu, Yi, 2017. "A technology-based analysis of the water-energy-emission nexus of China’s steel industry," Resources, Conservation & Recycling, Elsevier, vol. 124(C), pages 116-128.
    19. Ida Karlsson & Johan Rootzén & Alla Toktarova & Mikael Odenberger & Filip Johnsson & Lisa Göransson, 2020. "Roadmap for Decarbonization of the Building and Construction Industry—A Supply Chain Analysis Including Primary Production of Steel and Cement," Energies, MDPI, vol. 13(16), pages 1-40, August.
    20. Ubando, Aristotle T. & Chen, Wei-Hsin & Ong, Hwai Chyuan, 2019. "Iron oxide reduction by graphite and torrefied biomass analyzed by TG-FTIR for mitigating CO2 emissions," Energy, Elsevier, vol. 180(C), pages 968-977.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:267:y:2023:i:c:s0360544222034235. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.