IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i11p2984-d369560.html
   My bibliography  Save this article

Impact of Pretreatment on Hydrothermally Carbonized Spruce

Author

Listed:
  • Anna Partridge

    (Energy Technology, Laboratory of Sustainable Energy Systems, LUT University, PL 20, 53851 Lappeenranta, Finland)

  • Ekaterina Sermyagina

    (Energy Technology, Laboratory of Sustainable Energy Systems, LUT University, PL 20, 53851 Lappeenranta, Finland)

  • Esa Vakkilainen

    (Energy Technology, Laboratory of Sustainable Energy Systems, LUT University, PL 20, 53851 Lappeenranta, Finland)

Abstract

Upgrading biomass waste streams can improve economics in wood industries by adding value to the process. This work considers use of a hydrothermal carbonization (HTC) process for the residual feedstock after lignin and hemicelluloses extraction. Batch experiments were performed at 200–240 °C temperatures and three hours residence time with an 8:1 biomass to water ratio for two feedstocks: Raw spruce and spruce after lignin extraction. The proximate analysis and heating value showed similar results for both feedstocks, indicating that the thermochemical conversion is not impacted by the removal of lignin and hemicelluloses; the pretreatment processing slightly increases the heating value of the treated feedstock, but the HTC conversion process produces a consistent upgrading trend for both the treated and untreated feedstocks. The energy yield was 9.7 percentage points higher for the treated wood on average across the range temperatures due to the higher mass yield in the treated experiments. The energy densification ratio and the mass yield were strongly correlated with reaction temperature, while the energy yield was not. Lignocellulosic composition of the solid HTC product is mainly affected by HTC treatment, the effect of lignin extraction is negligible.

Suggested Citation

  • Anna Partridge & Ekaterina Sermyagina & Esa Vakkilainen, 2020. "Impact of Pretreatment on Hydrothermally Carbonized Spruce," Energies, MDPI, vol. 13(11), pages 1-13, June.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2984-:d:369560
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/11/2984/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/11/2984/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yong Sun & Zhi Wang & Yuyingnan Liu & Xianghui Meng & Jingbo Qu & Changyu Liu & Bin Qu, 2019. "A Review on the Transformation of Furfural Residue for Value-Added Products," Energies, MDPI, vol. 13(1), pages 1-19, December.
    2. Azadi, Pooya & Inderwildi, Oliver R. & Farnood, Ramin & King, David A., 2013. "Liquid fuels, hydrogen and chemicals from lignin: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 506-523.
    3. Zhiyu Li & Weiming Yi & Zhihe Li & Chunyan Tian & Peng Fu & Yuchun Zhang & Ling Zhou & Jie Teng, 2020. "Preparation of Solid Fuel Hydrochar over Hydrothermal Carbonization of Red Jujube Branch," Energies, MDPI, vol. 13(2), pages 1-10, January.
    4. Mahmudul Hasan & Yousef Haseli & Ernur Karadogan, 2018. "Correlations to Predict Elemental Compositions and Heating Value of Torrefied Biomass," Energies, MDPI, vol. 11(9), pages 1-15, September.
    5. Ariadna Fuente-Hernández & Roland Lee & Nicolas Béland & Ingrid Zamboni & Jean-Michel Lavoie, 2017. "Reduction of Furfural to Furfuryl Alcohol in Liquid Phase over a Biochar-Supported Platinum Catalyst," Energies, MDPI, vol. 10(3), pages 1-10, February.
    6. Kamila Przybysz Buzała & Halina Kalinowska & Edyta Małachowska & Piotr Boruszewski & Krzysztof Krajewski & Piotr Przybysz, 2019. "The Effect of Lignin Content in Birch and Beech Kraft Cellulosic Pulps on Simple Sugar Yields from the Enzymatic Hydrolysis of Cellulose," Energies, MDPI, vol. 12(15), pages 1-11, July.
    7. Chen, Zhu & Wan, Caixia, 2017. "Biological valorization strategies for converting lignin into fuels and chemicals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 610-621.
    8. Bach, Quang-Vu & Skreiberg, Øyvind, 2016. "Upgrading biomass fuels via wet torrefaction: A review and comparison with dry torrefaction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 665-677.
    9. Sennai Mesfun & Leonidas Matsakas & Ulrika Rova & Paul Christakopoulos, 2019. "Technoeconomic Assessment of Hybrid Organosolv–Steam Explosion Pretreatment of Woody Biomass," Energies, MDPI, vol. 12(21), pages 1-18, November.
    10. Michela Lucian & Maurizio Volpe & Luca Fiori, 2019. "Hydrothermal Carbonization Kinetics of Lignocellulosic Agro-Wastes: Experimental Data and Modeling," Energies, MDPI, vol. 12(3), pages 1-20, February.
    11. Kirsten M. Davis & Marjorie Rover & Robert C. Brown & Xianglan Bai & Zhiyou Wen & Laura R. Jarboe, 2016. "Recovery and Utilization of Lignin Monomers as Part of the Biorefinery Approach," Energies, MDPI, vol. 9(10), pages 1-28, October.
    12. Dhananjay Bhatt & Ankita Shrestha & Raj Kumar Dahal & Bishnu Acharya & Prabir Basu & Richard MacEwen, 2018. "Hydrothermal Carbonization of Biosolids from Waste Water Treatment Plant," Energies, MDPI, vol. 11(9), pages 1-10, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Neel Patel & Bishnu Acharya & Prabir Basu, 2021. "Hydrothermal Carbonization (HTC) of Seaweed (Macroalgae) for Producing Hydrochar," Energies, MDPI, vol. 14(7), pages 1-16, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manfredi Picciotto Maniscalco & Maurizio Volpe & Antonio Messineo, 2020. "Hydrothermal Carbonization as a Valuable Tool for Energy and Environmental Applications: A Review," Energies, MDPI, vol. 13(16), pages 1-26, August.
    2. Adrian Knapczyk & Sławomir Francik & Marcin Jewiarz & Agnieszka Zawiślak & Renata Francik, 2020. "Thermal Treatment of Biomass: A Bibliometric Analysis—The Torrefaction Case," Energies, MDPI, vol. 14(1), pages 1-31, December.
    3. Matteo Borella & Alessandro A. Casazza & Gabriella Garbarino & Paola Riani & Guido Busca, 2022. "A Study of the Pyrolysis Products of Kraft Lignin," Energies, MDPI, vol. 15(3), pages 1-15, January.
    4. Chen, Zhu & Wan, Caixia, 2017. "Biological valorization strategies for converting lignin into fuels and chemicals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 610-621.
    5. Sangare, Diakaridia & Bostyn, Stéphane & Moscosa-Santillan, Mario & Gökalp, Iskender, 2021. "Hydrodynamics, heat transfer and kinetics reaction of CFD modeling of a batch stirred reactor under hydrothermal carbonization conditions," Energy, Elsevier, vol. 219(C).
    6. Ummartyotin, Sarute & Manuspiya, Hathaikarn, 2015. "A critical review on cellulose: From fundamental to an approach on sensor technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 402-412.
    7. Kumar, R. & Strezov, V., 2021. "Thermochemical production of bio-oil: A review of downstream processing technologies for bio-oil upgrading, production of hydrogen and high value-added products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    8. Yan, Kai & Wu, Guosheng & Lafleur, Todd & Jarvis, Cody, 2014. "Production, properties and catalytic hydrogenation of furfural to fuel additives and value-added chemicals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 663-676.
    9. Neves, Renato Cruz & Klein, Bruno Colling & da Silva, Ricardo Justino & Rezende, Mylene Cristina Alves Ferreira & Funke, Axel & Olivarez-Gómez, Edgardo & Bonomi, Antonio & Maciel-Filho, Rubens, 2020. "A vision on biomass-to-liquids (BTL) thermochemical routes in integrated sugarcane biorefineries for biojet fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    10. Jiang, Chunlong & Lin, Qizhao & Wang, Chengxin & Jiang, Xuedan & Bi, Haobo & Bao, Lin, 2020. "Experimental study of the ignition and combustion characteristics of cattle manure under different environmental conditions," Energy, Elsevier, vol. 197(C).
    11. Jaime Martín-Pascual & Joaquín Jódar & Miguel L. Rodríguez & Montserrat Zamorano, 2020. "Determination of the Optimal Operative Conditions for the Torrefaction of Olive Waste Biomass," Sustainability, MDPI, vol. 12(16), pages 1-11, August.
    12. Zhu, Daochen & Qaria, Majjid A. & Zhu, Bin & Sun, Jianzhong & Yang, Bin, 2022. "Extremophiles and extremozymes in lignin bioprocessing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    13. Fabio Merzari & Jillian Goldfarb & Gianni Andreottola & Tanja Mimmo & Maurizio Volpe & Luca Fiori, 2020. "Hydrothermal Carbonization as a Strategy for Sewage Sludge Management: Influence of Process Withdrawal Point on Hydrochar Properties," Energies, MDPI, vol. 13(11), pages 1-22, June.
    14. Kirsten M. Davis & Marjorie Rover & Robert C. Brown & Xianglan Bai & Zhiyou Wen & Laura R. Jarboe, 2016. "Recovery and Utilization of Lignin Monomers as Part of the Biorefinery Approach," Energies, MDPI, vol. 9(10), pages 1-28, October.
    15. Saba, N. & Jawaid, M. & Hakeem, K.R. & Paridah, M.T. & Khalina, A. & Alothman, O.Y., 2015. "Potential of bioenergy production from industrial kenaf (Hibiscus cannabinus L.) based on Malaysian perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 446-459.
    16. da Silva, Francinaldo Leite & de Oliveira Campos, Alan & dos Santos, Davi Alves & Batista Magalhães, Emilianny Rafaely & de Macedo, Gorete Ribeiro & dos Santos, Everaldo Silvino, 2018. "Valorization of an agroextractive residue—Carnauba straw—for the production of bioethanol by simultaneous saccharification and fermentation (SSF)," Renewable Energy, Elsevier, vol. 127(C), pages 661-669.
    17. Parascanu, M.M. & Sandoval-Salas, F. & Soreanu, G. & Valverde, J.L. & Sanchez-Silva, L., 2017. "Valorization of Mexican biomasses through pyrolysis, combustion and gasification processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 509-522.
    18. Eunhye Song & Ho Kim & Kyung Woo Kim & Young-Man Yoon, 2023. "Characteristic Evaluation of Different Carbonization Processes for Hydrochar, Torrefied Char, and Biochar Produced from Cattle Manure," Energies, MDPI, vol. 16(7), pages 1-14, April.
    19. LiLu T. Funkenbusch & Michael E. Mullins & Lennart Vamling & Tallal Belkhieri & Nattapol Srettiwat & Olumide Winjobi & David R. Shonnard & Tony N. Rogers, 2019. "Technoeconomic assessment of hydrothermal liquefaction oil from lignin with catalytic upgrading for renewable fuel and chemical production," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(1), January.
    20. Gyeong-Min Kim & Dae-Gyun Lee & Chung-Hwan Jeon, 2019. "Fundamental Characteristics and Kinetic Analysis of Lignocellulosic Woody and Herbaceous Biomass Fuels," Energies, MDPI, vol. 12(6), pages 1-16, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2984-:d:369560. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.