IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i22p4344-d287094.html
   My bibliography  Save this article

Waste to Carbon: Biocoal from Elephant Dung as New Cooking Fuel

Author

Listed:
  • Paweł Stępień

    (Institute of Agricultural Engineering, Faculty of Life Sciences and Technology, Wroclaw University of Environmental and Life Sciences, 37a Chełmońskiego Str., 51-630 Wroclaw, Poland)

  • Kacper Świechowski

    (Institute of Agricultural Engineering, Faculty of Life Sciences and Technology, Wroclaw University of Environmental and Life Sciences, 37a Chełmońskiego Str., 51-630 Wroclaw, Poland)

  • Martyna Hnat

    (Institute of Agricultural Engineering, Faculty of Life Sciences and Technology, Wroclaw University of Environmental and Life Sciences, 37a Chełmońskiego Str., 51-630 Wroclaw, Poland)

  • Szymon Kugler

    (Polymer Institute, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, 10 Pułaskiego Str., 70-322 Szczecin, Poland)

  • Sylwia Stegenta-Dąbrowska

    (Institute of Agricultural Engineering, Faculty of Life Sciences and Technology, Wroclaw University of Environmental and Life Sciences, 37a Chełmońskiego Str., 51-630 Wroclaw, Poland)

  • Jacek A. Koziel

    (Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA 50011-3270, USA)

  • Piotr Manczarski

    (Department of Environmental Engineering, Hydro and Environmental Engineering, Faculty of Building Services, Warsaw University of Technology, 00-661 Warszawa, Poland)

  • Andrzej Białowiec

    (Institute of Agricultural Engineering, Faculty of Life Sciences and Technology, Wroclaw University of Environmental and Life Sciences, 37a Chełmońskiego Str., 51-630 Wroclaw, Poland
    Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA 50011-3270, USA)

Abstract

The paper presents, for the first time, the results of fuel characteristics of biochars from torrefaction (a.k.a., roasting or low-temperature pyrolysis) of elephant dung (manure). Elephant dung could be processed and valorized by torrefaction to produce fuel with improved qualities for cooking. The work aimed to examine the possibility of using torrefaction to (1) valorize elephant waste and to (2) determine the impact of technological parameters (temperature and duration of the torrefaction process) on the waste conversion rate and fuel properties of resulting biochar (biocoal). In addition, the influence of temperature on the kinetics of the torrefaction and its energy consumption was examined. The lab-scale experiment was based on the production of biocoals at six temperatures (200–300 °C; 20 °C interval) and three process durations of the torrefaction (20, 40, 60 min). The generated biocoals were characterized in terms of moisture content, organic matter, ash, and higher heating values. In addition, thermogravimetric and differential scanning calorimetry analyses were also used for process kinetics assessment. The results show that torrefaction is a feasible method for elephant dung valorization and it could be used as fuel. The process temperature ranging from 200 to 260 °C did not affect the key fuel properties (high heating value, HHV , HHV daf , regardless of the process duration), i.e., important practical information for proposed low-tech applications. However, the higher heating values of the biocoal decreased above 260 °C. Further research is needed regarding the torrefaction of elephant dung focused on scaling up, techno-economic analyses, and the possibility of improving access to reliable energy sources in rural areas.

Suggested Citation

  • Paweł Stępień & Kacper Świechowski & Martyna Hnat & Szymon Kugler & Sylwia Stegenta-Dąbrowska & Jacek A. Koziel & Piotr Manczarski & Andrzej Białowiec, 2019. "Waste to Carbon: Biocoal from Elephant Dung as New Cooking Fuel," Energies, MDPI, vol. 12(22), pages 1-32, November.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:22:p:4344-:d:287094
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/22/4344/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/22/4344/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marta Dudek & Kacper Świechowski & Piotr Manczarski & Jacek A. Koziel & Andrzej Białowiec, 2019. "The Effect of Biochar Addition on the Biogas Production Kinetics from the Anaerobic Digestion of Brewers’ Spent Grain," Energies, MDPI, vol. 12(8), pages 1-22, April.
    2. Andrzej Białowiec & Monika Micuda & Antoni Szumny & Jacek Łyczko & Jacek A. Koziel, 2019. "Waste to Carbon: Influence of Structural Modification on VOC Emission Kinetics from Stored Carbonized Refuse-Derived Fuel," Sustainability, MDPI, vol. 11(3), pages 1-13, February.
    3. Jakub Pulka & Piotr Manczarski & Jacek A. Koziel & Andrzej Białowiec, 2019. "Torrefaction of Sewage Sludge: Kinetics and Fuel Properties of Biochars," Energies, MDPI, vol. 12(3), pages 1-10, February.
    4. Jia, Junxi & Shu, Lingyun & Zang, Guiyan & Xu, Lijun & Abudula, Abuliti & Ge, Kun, 2018. "Energy analysis and techno-economic assessment of a co-gasification of woody biomass and animal manure, solid oxide fuel cells and micro gas turbine hybrid system," Energy, Elsevier, vol. 149(C), pages 750-761.
    5. Bach, Quang-Vu & Skreiberg, Øyvind, 2016. "Upgrading biomass fuels via wet torrefaction: A review and comparison with dry torrefaction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 665-677.
    6. Arkadiusz Dyjakon & Tomasz Noszczyk, 2019. "The Influence of Freezing Temperature Storage on the Mechanical Durability of Commercial Pellets from Biomass," Energies, MDPI, vol. 12(13), pages 1-13, July.
    7. Das, Karabee & Hiloidhari, Moonmoon & Baruah, D.C. & Nonhebel, Sanderine, 2018. "Impact of time expenditure on household preferences for cooking fuels," Energy, Elsevier, vol. 151(C), pages 309-316.
    8. Qambrani, Naveed Ahmed & Rahman, Md. Mukhlesur & Won, Seunggun & Shim, Soomin & Ra, Changsix, 2017. "Biochar properties and eco-friendly applications for climate change mitigation, waste management, and wastewater treatment: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 255-273.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adrian Knapczyk & Sławomir Francik & Marcin Jewiarz & Agnieszka Zawiślak & Renata Francik, 2020. "Thermal Treatment of Biomass: A Bibliometric Analysis—The Torrefaction Case," Energies, MDPI, vol. 14(1), pages 1-31, December.
    2. Hao Luo & Lukasz Niedzwiecki & Amit Arora & Krzysztof Mościcki & Halina Pawlak-Kruczek & Krystian Krochmalny & Marcin Baranowski & Mayank Tiwari & Anshul Sharma & Tanuj Sharma & Zhimin Lu, 2020. "Influence of Torrefaction and Pelletizing of Sawdust on the Design Parameters of a Fixed Bed Gasifier," Energies, MDPI, vol. 13(11), pages 1-19, June.
    3. Eliseu Monteiro & Sérgio Ferreira, 2022. "Biomass Waste for Energy Production," Energies, MDPI, vol. 15(16), pages 1-5, August.
    4. Kacper Świechowski & Martyna Hnat & Paweł Stępień & Sylwia Stegenta-Dąbrowska & Szymon Kugler & Jacek A. Koziel & Andrzej Białowiec, 2020. "Waste to Energy: Solid Fuel Production from Biogas Plant Digestate and Sewage Sludge by Torrefaction-Process Kinetics, Fuel Properties, and Energy Balance," Energies, MDPI, vol. 13(12), pages 1-37, June.
    5. Izabella Maj & Sylwester Kalisz & Szymon Ciukaj, 2022. "Properties of Animal-Origin Ash—A Valuable Material for Circular Economy," Energies, MDPI, vol. 15(4), pages 1-15, February.
    6. Kacper Świechowski & Ewa Syguła & Jacek A. Koziel & Paweł Stępień & Szymon Kugler & Piotr Manczarski & Andrzej Białowiec, 2020. "Low-Temperature Pyrolysis of Municipal Solid Waste Components and Refuse-Derived Fuel—Process Efficiency and Fuel Properties of Carbonized Solid Fuel," Data, MDPI, vol. 5(2), pages 1-8, May.
    7. Bartosz Matyjewicz & Kacper Świechowski & Jacek A. Koziel & Andrzej Białowiec, 2020. "Proof-of-Concept of High-Pressure Torrefaction for Improvement of Pelletized Biomass Fuel Properties and Process Cost Reduction," Energies, MDPI, vol. 13(18), pages 1-27, September.
    8. Samuel O’Brien & Jacek A. Koziel & Chumki Banik & Andrzej Białowiec, 2020. "Synergy of Thermochemical Treatment of Dried Distillers Grains with Solubles with Bioethanol Production for Increased Sustainability and Profitability," Energies, MDPI, vol. 13(17), pages 1-14, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adrian Knapczyk & Sławomir Francik & Marcin Jewiarz & Agnieszka Zawiślak & Renata Francik, 2020. "Thermal Treatment of Biomass: A Bibliometric Analysis—The Torrefaction Case," Energies, MDPI, vol. 14(1), pages 1-31, December.
    2. Kacper Świechowski & Marek Liszewski & Przemysław Bąbelewski & Jacek A. Koziel & Andrzej Białowiec, 2019. "Fuel Properties of Torrefied Biomass from Pruning of Oxytree," Data, MDPI, vol. 4(2), pages 1-10, April.
    3. Jacek Łyczko & Jacek A. Koziel & Chumki Banik & Andrzej Białowiec, 2021. "The Proof-of-Concept: The Transformation of Naphthalene and Its Derivatives into Decalin and Its Derivatives during Thermochemical Processing of Sewage Sludge," Energies, MDPI, vol. 14(20), pages 1-11, October.
    4. Kacper Świechowski & Martyna Hnat & Paweł Stępień & Sylwia Stegenta-Dąbrowska & Szymon Kugler & Jacek A. Koziel & Andrzej Białowiec, 2020. "Waste to Energy: Solid Fuel Production from Biogas Plant Digestate and Sewage Sludge by Torrefaction-Process Kinetics, Fuel Properties, and Energy Balance," Energies, MDPI, vol. 13(12), pages 1-37, June.
    5. Kumar, A. Naresh & Dissanayake, Pavani Dulanja & Masek, Ondrej & Priya, Anshu & Ki Lin, Carol Sze & Ok, Yong Sik & Kim, Sang-Hyoun, 2021. "Recent trends in biochar integration with anaerobic fermentation: Win-win strategies in a closed-loop," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    6. Ewa Syguła & Jacek A. Koziel & Andrzej Białowiec, 2019. "Proof-of-Concept of Spent Mushrooms Compost Torrefaction—Studying the Process Kinetics and the Influence of Temperature and Duration on the Calorific Value of the Produced Biocoal," Energies, MDPI, vol. 12(16), pages 1-19, August.
    7. Arkadiusz Dyjakon & Tomasz Noszczyk, 2020. "Alternative Fuels from Forestry Biomass Residue: Torrefaction Process of Horse Chestnuts, Oak Acorns, and Spruce Cones," Energies, MDPI, vol. 13(10), pages 1-19, May.
    8. Hamid Gilvari & Wiebren De Jong & Dingena L. Schott, 2020. "The Effect of Biomass Pellet Length, Test Conditions and Torrefaction on Mechanical Durability Characteristics According to ISO Standard 17831-1," Energies, MDPI, vol. 13(11), pages 1-16, June.
    9. Sergio Jaimes Rueda & Bruna Rego de Vasconcelos & Xavier Duret & Jean-Michel Lavoie, 2022. "Lignin Pellets for Advanced Thermochemical Process—From a Single Pellet System to a Laboratory-Scale Pellet Mill," Energies, MDPI, vol. 15(9), pages 1-20, April.
    10. Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.
    11. Cheng Huang & Xiuyun Sun & Lianjun Wang & Paul Storer & Kadambot H. M. Siddique & Zakaria M. Solaiman, 2021. "Nutrients Leaching from Tillage Soil Amended with Wheat Straw Biochar Influenced by Fertiliser Type," Agriculture, MDPI, vol. 11(11), pages 1-13, November.
    12. Kumar, R. & Strezov, V., 2021. "Thermochemical production of bio-oil: A review of downstream processing technologies for bio-oil upgrading, production of hydrogen and high value-added products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    13. Neves, Renato Cruz & Klein, Bruno Colling & da Silva, Ricardo Justino & Rezende, Mylene Cristina Alves Ferreira & Funke, Axel & Olivarez-Gómez, Edgardo & Bonomi, Antonio & Maciel-Filho, Rubens, 2020. "A vision on biomass-to-liquids (BTL) thermochemical routes in integrated sugarcane biorefineries for biojet fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    14. Jiang, Chunlong & Lin, Qizhao & Wang, Chengxin & Jiang, Xuedan & Bi, Haobo & Bao, Lin, 2020. "Experimental study of the ignition and combustion characteristics of cattle manure under different environmental conditions," Energy, Elsevier, vol. 197(C).
    15. Khushbu Kumari & Raushan Kumar & Nirmali Bordoloi & Tatiana Minkina & Chetan Keswani & Kuldeep Bauddh, 2023. "Unravelling the Recent Developments in the Production Technology and Efficient Applications of Biochar for Agro-Ecosystems," Agriculture, MDPI, vol. 13(3), pages 1-26, February.
    16. Jaime Martín-Pascual & Joaquín Jódar & Miguel L. Rodríguez & Montserrat Zamorano, 2020. "Determination of the Optimal Operative Conditions for the Torrefaction of Olive Waste Biomass," Sustainability, MDPI, vol. 12(16), pages 1-11, August.
    17. Andrade Díaz, Christhel & Albers, Ariane & Zamora-Ledezma, Ezequiel & Hamelin, Lorie, 2024. "The interplay between bioeconomy and the maintenance of long-term soil organic carbon stock in agricultural soils: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    18. Sergio Paniagua & Alba Prado-Guerra & Ana Isabel Neto & Teresa Nunes & Luís Tarelho & Célia Alves & Luis Fernando Calvo, 2020. "Influence of Varieties and Organic Fertilizer in the Elaboration of a New Poplar-Straw Pellet and Its Emissions in a Domestic Boiler," Energies, MDPI, vol. 13(23), pages 1-17, November.
    19. Siti Zaharah Roslan & Siti Fairuz Zainudin & Alijah Mohd Aris & Khor Bee Chin & Mohibah Musa & Ahmad Rafizan Mohamad Daud & Syed Shatir A. Syed Hassan, 2023. "Hydrothermal Carbonization of Sewage Sludge into Solid Biofuel: Influences of Process Conditions on the Energetic Properties of Hydrochar," Energies, MDPI, vol. 16(5), pages 1-16, March.
    20. Lee, Jechan & Kim, Soosan & You, Siming & Park, Young-Kwon, 2023. "Bioenergy generation from thermochemical conversion of lignocellulosic biomass-based integrated renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:22:p:4344-:d:287094. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.