IDEAS home Printed from https://ideas.repec.org/r/eee/renene/v133y2019icp422-432.html
   My bibliography  Save this item

Fault diagnosis of wind turbine based on Long Short-term memory networks

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Pang, Yanhua & He, Qun & Jiang, Guoqian & Xie, Ping, 2020. "Spatio-temporal fusion neural network for multi-class fault diagnosis of wind turbines based on SCADA data," Renewable Energy, Elsevier, vol. 161(C), pages 510-524.
  2. Khan, Noman & Khan, Samee Ullah & Baik, Sung Wook, 2023. "Deep dive into hybrid networks: A comparative study and novel architecture for efficient power prediction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
  3. Zhan, Jun & Wu, Chengkun & Yang, Canqun & Miao, Qiucheng & Wang, Shilin & Ma, Xiandong, 2022. "Condition monitoring of wind turbines based on spatial-temporal feature aggregation networks," Renewable Energy, Elsevier, vol. 200(C), pages 751-766.
  4. Ertam, Fatih, 2019. "An efficient hybrid deep learning approach for internet security," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
  5. Amitkumar Patil & Gunjan Soni & Anuj Prakash, 2022. "A BMFO-KNN based intelligent fault detection approach for reciprocating compressor," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(2), pages 797-809, June.
  6. Annalisa Santolamazza & Daniele Dadi & Vito Introna, 2021. "A Data-Mining Approach for Wind Turbine Fault Detection Based on SCADA Data Analysis Using Artificial Neural Networks," Energies, MDPI, vol. 14(7), pages 1-25, March.
  7. Xu, Zifei & Mei, Xuan & Wang, Xinyu & Yue, Minnan & Jin, Jiangtao & Yang, Yang & Li, Chun, 2022. "Fault diagnosis of wind turbine bearing using a multi-scale convolutional neural network with bidirectional long short term memory and weighted majority voting for multi-sensors," Renewable Energy, Elsevier, vol. 182(C), pages 615-626.
  8. Peng Qian & Xiange Tian & Jamil Kanfoud & Joash Lap Yan Lee & Tat-Hean Gan, 2019. "A Novel Condition Monitoring Method of Wind Turbines Based on Long Short-Term Memory Neural Network," Energies, MDPI, vol. 12(18), pages 1-15, September.
  9. Jianjun Chen & Weihao Hu & Di Cao & Bin Zhang & Qi Huang & Zhe Chen & Frede Blaabjerg, 2019. "An Imbalance Fault Detection Algorithm for Variable-Speed Wind Turbines: A Deep Learning Approach," Energies, MDPI, vol. 12(14), pages 1-15, July.
  10. Chang, Yuanhong & Chen, Jinglong & Qu, Cheng & Pan, Tongyang, 2020. "Intelligent fault diagnosis of Wind Turbines via a Deep Learning Network Using Parallel Convolution Layers with Multi-Scale Kernels," Renewable Energy, Elsevier, vol. 153(C), pages 205-213.
  11. Dibaj, Ali & Gao, Zhen & Nejad, Amir R., 2023. "Fault detection of offshore wind turbine drivetrains in different environmental conditions through optimal selection of vibration measurements," Renewable Energy, Elsevier, vol. 203(C), pages 161-176.
  12. Kong, Ziqian & Tang, Baoping & Deng, Lei & Liu, Wenyi & Han, Yan, 2020. "Condition monitoring of wind turbines based on spatio-temporal fusion of SCADA data by convolutional neural networks and gated recurrent units," Renewable Energy, Elsevier, vol. 146(C), pages 760-768.
  13. Xiaoxun, Zhu & Xinyu, Hang & Xiaoxia, Gao & Xing, Yang & Zixu, Xu & Yu, Wang & Huaxin, Liu, 2022. "Research on crack detection method of wind turbine blade based on a deep learning method," Applied Energy, Elsevier, vol. 328(C).
  14. Zheng, Minglei & Man, Junfeng & Wang, Dian & Chen, Yanan & Li, Qianqian & Liu, Yong, 2023. "Semi-supervised multivariate time series anomaly detection for wind turbines using generator SCADA data," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
  15. Giuseppe Ciaburro & Gino Iannace, 2021. "Machine Learning-Based Algorithms to Knowledge Extraction from Time Series Data: A Review," Data, MDPI, vol. 6(6), pages 1-30, May.
  16. Guo, Jihong & Liu, Chao & Cao, Jinfeng & Jiang, Dongxiang, 2021. "Damage identification of wind turbine blades with deep convolutional neural networks," Renewable Energy, Elsevier, vol. 174(C), pages 122-133.
  17. Zemali, Zakaria & Cherroun, Lakhmissi & Hadroug, Nadji & Hafaifa, Ahmed & Iratni, Abdelhamid & Alshammari, Obaid S. & Colak, Ilhami, 2023. "Robust intelligent fault diagnosis strategy using Kalman observers and neuro-fuzzy systems for a wind turbine benchmark," Renewable Energy, Elsevier, vol. 205(C), pages 873-898.
  18. Zahra Yahyaoui & Mansour Hajji & Majdi Mansouri & Kamaleldin Abodayeh & Kais Bouzrara & Hazem Nounou, 2022. "Effective Fault Detection and Diagnosis for Power Converters in Wind Turbine Systems Using KPCA-Based BiLSTM," Energies, MDPI, vol. 15(17), pages 1-19, August.
  19. Zhaoyan Zhang & Shaoke Wang & Peiguang Wang & Ping Jiang & Hang Zhou, 2022. "Research on Fault Early Warning of Wind Turbine Based on IPSO-DBN," Energies, MDPI, vol. 15(23), pages 1-18, November.
  20. Zhannan Guo & Yinlin Hao & Hanwen Shi & Zhenyu Wu & Yuhu Wu & Ximing Sun, 2023. "A Fault Diagnosis Algorithm for the Dedicated Equipment Based on the CNN-LSTM Mechanism," Energies, MDPI, vol. 16(13), pages 1-16, July.
  21. Rahimilarki, Reihane & Gao, Zhiwei & Jin, Nanlin & Zhang, Aihua, 2022. "Convolutional neural network fault classification based on time-series analysis for benchmark wind turbine machine," Renewable Energy, Elsevier, vol. 185(C), pages 916-931.
  22. Xiao Wang & Zheng Zheng & Guoqian Jiang & Qun He & Ping Xie, 2022. "Detecting Wind Turbine Blade Icing with a Multiscale Long Short-Term Memory Network," Energies, MDPI, vol. 15(8), pages 1-19, April.
  23. Yan Xia & Feihong Yu & Xingzhong Xiong & Qinyuan Huang & Qijun Zhou, 2022. "A Novel Microgrid Islanding Detection Algorithm Based on a Multi-Feature Improved LSTM," Energies, MDPI, vol. 15(8), pages 1-24, April.
  24. Chen, Hansi & Liu, Hang & Chu, Xuening & Liu, Qingxiu & Xue, Deyi, 2021. "Anomaly detection and critical SCADA parameters identification for wind turbines based on LSTM-AE neural network," Renewable Energy, Elsevier, vol. 172(C), pages 829-840.
  25. Adaiton Oliveira-Filho & Ryad Zemouri & Philippe Cambron & Antoine Tahan, 2023. "Early Detection and Diagnosis of Wind Turbine Abnormal Conditions Using an Interpretable Supervised Variational Autoencoder Model," Energies, MDPI, vol. 16(12), pages 1-21, June.
  26. Mingzhu Tang & Qi Zhao & Steven X. Ding & Huawei Wu & Linlin Li & Wen Long & Bin Huang, 2020. "An Improved LightGBM Algorithm for Online Fault Detection of Wind Turbine Gearboxes," Energies, MDPI, vol. 13(4), pages 1-16, February.
  27. Gregory Duthé & Imad Abdallah & Sarah Barber & Eleni Chatzi, 2021. "Modeling and Monitoring Erosion of the Leading Edge of Wind Turbine Blades," Energies, MDPI, vol. 14(21), pages 1-33, November.
  28. Xiange Tian & Yongjian Jiang & Chen Liang & Cong Liu & You Ying & Hua Wang & Dahai Zhang & Peng Qian, 2022. "A Novel Condition Monitoring Method of Wind Turbines Based on GMDH Neural Network," Energies, MDPI, vol. 15(18), pages 1-15, September.
  29. Zhang, Chen & Hu, Di & Yang, Tao, 2022. "Anomaly detection and diagnosis for wind turbines using long short-term memory-based stacked denoising autoencoders and XGBoost," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
  30. Rameshrao, Awagan Goyal & Koley, Ebha & Ghosh, Subhojit, 2022. "A LSTM-based approach for detection of high impedance faults in hybrid microgrid with immunity against weather intermittency and N-1 contingency," Renewable Energy, Elsevier, vol. 198(C), pages 75-90.
  31. Li, Yanting & Jiang, Wenbo & Zhang, Guangyao & Shu, Lianjie, 2021. "Wind turbine fault diagnosis based on transfer learning and convolutional autoencoder with small-scale data," Renewable Energy, Elsevier, vol. 171(C), pages 103-115.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.