Robust intelligent fault diagnosis strategy using Kalman observers and neuro-fuzzy systems for a wind turbine benchmark
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2023.01.095
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Liu, Yichao & Ferrari, Riccardo & Wu, Ping & Jiang, Xiaoli & Li, Sunwei & Wingerden, Jan-Willem van, 2021. "Fault diagnosis of the 10MW Floating Offshore Wind Turbine Benchmark: A mixed model and signal-based approach," Renewable Energy, Elsevier, vol. 164(C), pages 391-406.
- Johansson, V. & Thorson, L. & Goop, J. & Göransson, L. & Odenberger, M. & Reichenberg, L. & Taljegard, M. & Johnsson, F., 2017. "Value of wind power – Implications from specific power," Energy, Elsevier, vol. 126(C), pages 352-360.
- Quan Zhou & Taotao Xiong & Mubin Wang & Chenmeng Xiang & Qingpeng Xu, 2017. "Diagnosis and Early Warning of Wind Turbine Faults Based on Cluster Analysis Theory and Modified ANFIS," Energies, MDPI, vol. 10(7), pages 1-15, July.
- Lei, Jinhao & Liu, Chao & Jiang, Dongxiang, 2019. "Fault diagnosis of wind turbine based on Long Short-term memory networks," Renewable Energy, Elsevier, vol. 133(C), pages 422-432.
- Wang, Jinjiang & Liang, Yuanyuan & Zheng, Yinghao & Gao, Robert X. & Zhang, Fengli, 2020. "An integrated fault diagnosis and prognosis approach for predictive maintenance of wind turbine bearing with limited samples," Renewable Energy, Elsevier, vol. 145(C), pages 642-650.
- Steven Chu & Arun Majumdar, 2012. "Opportunities and challenges for a sustainable energy future," Nature, Nature, vol. 488(7411), pages 294-303, August.
- Kandukuri, Surya Teja & Klausen, Andreas & Karimi, Hamid Reza & Robbersmyr, Kjell Gunnar, 2016. "A review of diagnostics and prognostics of low-speed machinery towards wind turbine farm-level health management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 697-708.
- Ming Ye & Jian Zhang & Jiaqiang Yang, 2022. "Bearing Fault Diagnosis under Time-Varying Speed and Load Conditions via Observer-Based Load Torque Analysis," Energies, MDPI, vol. 15(10), pages 1-16, May.
- Zhang, Yan & Liu, Wenyi & Wang, Xin & Gu, Heng, 2022. "A novel wind turbine fault diagnosis method based on compressed sensing and DTL-CNN," Renewable Energy, Elsevier, vol. 194(C), pages 249-258.
- Pierre Tchakoua & René Wamkeue & Mohand Ouhrouche & Fouad Slaoui-Hasnaoui & Tommy Andy Tameghe & Gabriel Ekemb, 2014. "Wind Turbine Condition Monitoring: State-of-the-Art Review, New Trends, and Future Challenges," Energies, MDPI, vol. 7(4), pages 1-36, April.
- Jordi Cusidó & Arnau López & Mattia Beretta, 2021. "Fault-Tolerant Control of a Wind Turbine Generator Based on Fuzzy Logic and Using Ensemble Learning," Energies, MDPI, vol. 14(16), pages 1-20, August.
- Peng Guo & Jian Fu & XiYun Yang, 2018. "Condition Monitoring and Fault Diagnosis of Wind Turbines Gearbox Bearing Temperature Based on Kolmogorov-Smirnov Test and Convolutional Neural Network Model," Energies, MDPI, vol. 11(9), pages 1-16, August.
- Stetco, Adrian & Dinmohammadi, Fateme & Zhao, Xingyu & Robu, Valentin & Flynn, David & Barnes, Mike & Keane, John & Nenadic, Goran, 2019. "Machine learning methods for wind turbine condition monitoring: A review," Renewable Energy, Elsevier, vol. 133(C), pages 620-635.
- Chang, Yuanhong & Chen, Jinglong & Qu, Cheng & Pan, Tongyang, 2020. "Intelligent fault diagnosis of Wind Turbines via a Deep Learning Network Using Parallel Convolution Layers with Multi-Scale Kernels," Renewable Energy, Elsevier, vol. 153(C), pages 205-213.
- Cho, Seongpil & Choi, Minjoo & Gao, Zhen & Moan, Torgeir, 2021. "Fault detection and diagnosis of a blade pitch system in a floating wind turbine based on Kalman filters and artificial neural networks," Renewable Energy, Elsevier, vol. 169(C), pages 1-13.
- Amirsoheil Honarbari & Sajad Najafi-Shad & Mohsen Saffari Pour & Seyed Soheil Mousavi Ajarostaghi & Ali Hassannia, 2021. "MPPT Improvement for PMSG-Based Wind Turbines Using Extended Kalman Filter and Fuzzy Control System," Energies, MDPI, vol. 14(22), pages 1-16, November.
- Méndez-Gordillo, Alma Rosa & Campos-Amezcua, Rafael & Cadenas, Erasmo, 2022. "Wind speed forecasting using a hybrid model considering the turbulence of the airflow," Renewable Energy, Elsevier, vol. 196(C), pages 422-431.
- Li, Yanting & Jiang, Wenbo & Zhang, Guangyao & Shu, Lianjie, 2021. "Wind turbine fault diagnosis based on transfer learning and convolutional autoencoder with small-scale data," Renewable Energy, Elsevier, vol. 171(C), pages 103-115.
- Chen, Wanqiu & Qiu, Yingning & Feng, Yanhui & Li, Ye & Kusiak, Andrew, 2021. "Diagnosis of wind turbine faults with transfer learning algorithms," Renewable Energy, Elsevier, vol. 163(C), pages 2053-2067.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Hongyan Dui & Yulu Zhang & Yun-An Zhang, 2023. "Grouping Maintenance Policy for Improving Reliability of Wind Turbine Systems Considering Variable Cost," Mathematics, MDPI, vol. 11(8), pages 1-20, April.
- Abdelmoumen Saci & Mohamed Nadour & Lakhmissi Cherroun & Ahmed Hafaifa & Abdellah Kouzou & Jose Rodriguez & Mohamed Abdelrahem, 2024. "Condition Monitoring Using Digital Fault-Detection Approach for Pitch System in Wind Turbines," Energies, MDPI, vol. 17(16), pages 1-35, August.
- Palanimuthu, Kumarasamy & Joo, Young Hoon, 2023. "Reliability improvement of the large-scale wind turbines with actuator faults using a robust fault-tolerant synergetic pitch control," Renewable Energy, Elsevier, vol. 217(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Mohamed Benbouzid & Tarek Berghout & Nur Sarma & Siniša Djurović & Yueqi Wu & Xiandong Ma, 2021. "Intelligent Condition Monitoring of Wind Power Systems: State of the Art Review," Energies, MDPI, vol. 14(18), pages 1-33, September.
- Rahimilarki, Reihane & Gao, Zhiwei & Jin, Nanlin & Zhang, Aihua, 2022. "Convolutional neural network fault classification based on time-series analysis for benchmark wind turbine machine," Renewable Energy, Elsevier, vol. 185(C), pages 916-931.
- Arturo Y. Jaen-Cuellar & David A. Elvira-Ortiz & Roque A. Osornio-Rios & Jose A. Antonino-Daviu, 2022. "Advances in Fault Condition Monitoring for Solar Photovoltaic and Wind Turbine Energy Generation: A Review," Energies, MDPI, vol. 15(15), pages 1-36, July.
- Jorge Maldonado-Correa & Sergio Martín-Martínez & Estefanía Artigao & Emilio Gómez-Lázaro, 2020. "Using SCADA Data for Wind Turbine Condition Monitoring: A Systematic Literature Review," Energies, MDPI, vol. 13(12), pages 1-21, June.
- Ana Rita Nunes & Hugo Morais & Alberto Sardinha, 2021. "Use of Learning Mechanisms to Improve the Condition Monitoring of Wind Turbine Generators: A Review," Energies, MDPI, vol. 14(21), pages 1-22, November.
- Zhu, Yongchao & Zhu, Caichao & Tan, Jianjun & Song, Chaosheng & Chen, Dingliang & Zheng, Jie, 2022. "Fault detection of offshore wind turbine gearboxes based on deep adaptive networks via considering Spatio-temporal fusion," Renewable Energy, Elsevier, vol. 200(C), pages 1023-1036.
- Sun, Shilin & Wang, Tianyang & Chu, Fulei, 2023. "A multi-learner neural network approach to wind turbine fault diagnosis with imbalanced data," Renewable Energy, Elsevier, vol. 208(C), pages 420-430.
- Annalisa Santolamazza & Daniele Dadi & Vito Introna, 2021. "A Data-Mining Approach for Wind Turbine Fault Detection Based on SCADA Data Analysis Using Artificial Neural Networks," Energies, MDPI, vol. 14(7), pages 1-25, March.
- Zhu, Yongchao & Zhu, Caichao & Tan, Jianjun & Tan, Yong & Rao, Lei, 2022. "Anomaly detection and condition monitoring of wind turbine gearbox based on LSTM-FS and transfer learning," Renewable Energy, Elsevier, vol. 189(C), pages 90-103.
- Manisha Sawant & Sameer Thakare & A. Prabhakara Rao & Andrés E. Feijóo-Lorenzo & Neeraj Dhanraj Bokde, 2021. "A Review on State-of-the-Art Reviews in Wind-Turbine- and Wind-Farm-Related Topics," Energies, MDPI, vol. 14(8), pages 1-30, April.
- Chen, Xuejun & Yang, Yongming & Cui, Zhixin & Shen, Jun, 2019. "Vibration fault diagnosis of wind turbines based on variational mode decomposition and energy entropy," Energy, Elsevier, vol. 174(C), pages 1100-1109.
- Camila Correa-Jullian & Sergio Cofre-Martel & Gabriel San Martin & Enrique Lopez Droguett & Gustavo de Novaes Pires Leite & Alexandre Costa, 2022. "Exploring Quantum Machine Learning and Feature Reduction Techniques for Wind Turbine Pitch Fault Detection," Energies, MDPI, vol. 15(8), pages 1-29, April.
- Xu, Xuefang & Li, Bo & Qiao, Zijian & Shi, Peiming & Shao, Huaishuang & Li, Ruixiong, 2023. "Caputo-Fabrizio fractional order derivative stochastic resonance enhanced by ADOF and its application in fault diagnosis of wind turbine drivetrain," Renewable Energy, Elsevier, vol. 219(P1).
- Truong, Hoai Vu Anh & Dang, Tri Dung & Vo, Cong Phat & Ahn, Kyoung Kwan, 2022. "Active control strategies for system enhancement and load mitigation of floating offshore wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
- Chen, Hansi & Liu, Hang & Chu, Xuening & Liu, Qingxiu & Xue, Deyi, 2021. "Anomaly detection and critical SCADA parameters identification for wind turbines based on LSTM-AE neural network," Renewable Energy, Elsevier, vol. 172(C), pages 829-840.
- Junshuai Yan & Yongqian Liu & Xiaoying Ren & Li Li, 2023. "Wind Turbine Gearbox Condition Monitoring Using Hybrid Attentions and Spatio-Temporal BiConvLSTM Network," Energies, MDPI, vol. 16(19), pages 1-22, September.
- Peng Jieyang & Andreas Kimmig & Wang Dongkun & Zhibin Niu & Fan Zhi & Wang Jiahai & Xiufeng Liu & Jivka Ovtcharova, 2023. "A systematic review of data-driven approaches to fault diagnosis and early warning," Journal of Intelligent Manufacturing, Springer, vol. 34(8), pages 3277-3304, December.
- Rami Al-Hajj & Ali Assi & Bilel Neji & Raymond Ghandour & Zaher Al Barakeh, 2023. "Transfer Learning for Renewable Energy Systems: A Survey," Sustainability, MDPI, vol. 15(11), pages 1-28, June.
- Wang, Anqi & Pei, Yan & Zhu, Yunyi & Qian, Zheng, 2023. "Wind turbine fault detection and identification through self-attention-based mechanism embedded with a multivariable query pattern," Renewable Energy, Elsevier, vol. 211(C), pages 918-937.
- Zhan, Jun & Wu, Chengkun & Yang, Canqun & Miao, Qiucheng & Wang, Shilin & Ma, Xiandong, 2022. "Condition monitoring of wind turbines based on spatial-temporal feature aggregation networks," Renewable Energy, Elsevier, vol. 200(C), pages 751-766.
More about this item
Keywords
Fault detection; Wind turbine; Neuro-fuzzy; Isolation; Kalman filter; Residual generation; Evaluation; Fault classification; Reliability; Redundancy;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:205:y:2023:i:c:p:873-898. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.