IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i21p7262-d671283.html
   My bibliography  Save this article

Modeling and Monitoring Erosion of the Leading Edge of Wind Turbine Blades

Author

Listed:
  • Gregory Duthé

    (Institute of Structural Engineering, ETH Zurich, CH-8093 Zurich, Switzerland
    These authors contributed equally to this work.)

  • Imad Abdallah

    (Institute of Structural Engineering, ETH Zurich, CH-8093 Zurich, Switzerland
    These authors contributed equally to this work.)

  • Sarah Barber

    (Institute of Energy Technology, Eastern Switzerland University of Applied Sciences, CH-8640 Rapperswil, Switzerland)

  • Eleni Chatzi

    (Institute of Structural Engineering, ETH Zurich, CH-8093 Zurich, Switzerland)

Abstract

Leading edge surface erosion is an emerging issue in wind turbine blade reliability, causing a reduction in power performance, aerodynamic loads imbalance, increased noise emission, and, ultimately, additional maintenance costs, and, if left untreated, it leads to the compromise of the functionality of the blade. In this work, we first propose an empirical spatio-temporal stochastic model for simulating leading edge erosion, to be used in conjunction with aeroelastic simulations, and subsequently present a deep learning model to be trained on simulated data, which aims to monitor leading edge erosion by detecting and classifying the degradation severity. This could help wind farm operators to reduce maintenance costs by planning cleaning and repair activities more efficiently. The main ingredients of the model include a damage process that progresses at random times, across multiple discrete states characterized by a non-homogeneous compound Poisson process, which is used to describe the random and time-dependent degradation of the blade surface, thus implicitly affecting its aerodynamic properties. The model allows for one, or more, zones along the span of the blades to be independently affected by erosion. The proposed model accounts for uncertainties in the local airfoil aerodynamics via parameterization of the lift and drag coefficients’ curves. The proposed model was used to generate a stochastic ensemble of degrading airfoil aerodynamic polars, for use in forward aero-servo-elastic simulations, where we computed the effect of leading edge erosion degradation on the dynamic response of a wind turbine under varying turbulent input inflow conditions. The dynamic response was chosen as a defining output as this relates to the output variable that is most commonly monitored under a structural health monitoring (SHM) regime. In this context, we further proposed an approach for spatio-temporal dependent diagnostics of leading erosion, namely, a deep learning attention-based Transformer, which we modified for classification tasks on slow degradation processes with long sequence multivariate time-series as inputs. We performed multiple sets of numerical experiments, aiming to evaluate the Transformer for diagnostics and assess its limitations. The results revealed Transformers as a potent method for diagnosis of such degradation processes. The attention-based mechanism allows the network to focus on different features at different time intervals for better prediction accuracy, especially for long time-series sequences representing a slow degradation process.

Suggested Citation

  • Gregory Duthé & Imad Abdallah & Sarah Barber & Eleni Chatzi, 2021. "Modeling and Monitoring Erosion of the Leading Edge of Wind Turbine Blades," Energies, MDPI, vol. 14(21), pages 1-33, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7262-:d:671283
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/21/7262/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/21/7262/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abdallah, I. & Natarajan, A. & Sørensen, J.D., 2015. "Impact of uncertainty in airfoil characteristics on wind turbine extreme loads," Renewable Energy, Elsevier, vol. 75(C), pages 283-300.
    2. Lei, Jinhao & Liu, Chao & Jiang, Dongxiang, 2019. "Fault diagnosis of wind turbine based on Long Short-term memory networks," Renewable Energy, Elsevier, vol. 133(C), pages 422-432.
    3. ASM Shihavuddin & Xiao Chen & Vladimir Fedorov & Anders Nymark Christensen & Nicolai Andre Brogaard Riis & Kim Branner & Anders Bjorholm Dahl & Rasmus Reinhold Paulsen, 2019. "Wind Turbine Surface Damage Detection by Deep Learning Aided Drone Inspection Analysis," Energies, MDPI, vol. 12(4), pages 1-15, February.
    4. Matthias Schramm & Hamid Rahimi & Bernhard Stoevesandt & Kim Tangager, 2017. "The Influence of Eroded Blades on Wind Turbine Performance Using Numerical Simulations," Energies, MDPI, vol. 10(9), pages 1-15, September.
    5. Herring, Robbie & Dyer, Kirsten & Martin, Ffion & Ward, Carwyn, 2019. "The increasing importance of leading edge erosion and a review of existing protection solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    6. Lijun Zhang & Kai Liu & Yufeng Wang & Zachary Bosire Omariba, 2018. "Ice Detection Model of Wind Turbine Blades Based on Random Forest Classifier," Energies, MDPI, vol. 11(10), pages 1-15, September.
    7. van Noortwijk, J.M., 2009. "A survey of the application of gamma processes in maintenance," Reliability Engineering and System Safety, Elsevier, vol. 94(1), pages 2-21.
    8. Han, Woobeom & Kim, Jonghwa & Kim, Bumsuk, 2018. "Effects of contamination and erosion at the leading edge of blade tip airfoils on the annual energy production of wind turbines," Renewable Energy, Elsevier, vol. 115(C), pages 817-823.
    9. Chen, C. S. & Savits, T. H., 1993. "Some remarks on compound nonhomogeneous Poisson processes," Statistics & Probability Letters, Elsevier, vol. 17(3), pages 179-187, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sara C. Pryor & Rebecca J. Barthelmie & Jeremy Cadence & Ebba Dellwik & Charlotte B. Hasager & Stephan T. Kral & Joachim Reuder & Marianne Rodgers & Marijn Veraart, 2022. "Atmospheric Drivers of Wind Turbine Blade Leading Edge Erosion: Review and Recommendations for Future Research," Energies, MDPI, vol. 15(22), pages 1-41, November.
    2. Simone Ferrari & Riccardo Rossi & Annalisa Di Bernardino, 2022. "A Review of Laboratory and Numerical Techniques to Simulate Turbulent Flows," Energies, MDPI, vol. 15(20), pages 1-56, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sergio Campobasso, M. & Castorrini, Alessio & Ortolani, Andrea & Minisci, Edmondo, 2023. "Probabilistic analysis of wind turbine performance degradation due to blade erosion accounting for uncertainty of damage geometry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    2. Jeanie A. Aird & Rebecca J. Barthelmie & Sara C. Pryor, 2023. "Automated Quantification of Wind Turbine Blade Leading Edge Erosion from Field Images," Energies, MDPI, vol. 16(6), pages 1-23, March.
    3. Mikkel Schou Nielsen & Ivan Nikolov & Emil Krog Kruse & Jørgen Garnæs & Claus Brøndgaard Madsen, 2020. "High-Resolution Structure-from-Motion for Quantitative Measurement of Leading-Edge Roughness," Energies, MDPI, vol. 13(15), pages 1-17, July.
    4. López, Javier Contreras & Kolios, Athanasios & Wang, Lin & Chiachio, Manuel, 2023. "A wind turbine blade leading edge rain erosion computational framework," Renewable Energy, Elsevier, vol. 203(C), pages 131-141.
    5. Papi, Francesco & Balduzzi, Francesco & Ferrara, Giovanni & Bianchini, Alessandro, 2021. "Uncertainty quantification on the effects of rain-induced erosion on annual energy production and performance of a Multi-MW wind turbine," Renewable Energy, Elsevier, vol. 165(P1), pages 701-715.
    6. Castorrini, Alessio & Ortolani, Andrea & Campobasso, M. Sergio, 2023. "Assessing the progression of wind turbine energy yield losses due to blade erosion by resolving damage geometries from lab tests and field observations," Renewable Energy, Elsevier, vol. 218(C).
    7. Verma, Amrit Shankar & Yan, Jiquan & Hu, Weifei & Jiang, Zhiyu & Shi, Wei & Teuwen, Julie J.E., 2023. "A review of impact loads on composite wind turbine blades: Impact threats and classification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    8. Wenjie Wang & Yu Xue & Chengkuan He & Yongnian Zhao, 2022. "Review of the Typical Damage and Damage-Detection Methods of Large Wind Turbine Blades," Energies, MDPI, vol. 15(15), pages 1-31, August.
    9. Francesco Papi & Lorenzo Cappugi & Simone Salvadori & Mauro Carnevale & Alessandro Bianchini, 2020. "Uncertainty Quantification of the Effects of Blade Damage on the Actual Energy Production of Modern Wind Turbines," Energies, MDPI, vol. 13(15), pages 1-18, July.
    10. Hasager, C. & Vejen, F. & Bech, J.I. & Skrzypiński, W.R. & Tilg, A.-M. & Nielsen, M., 2020. "Assessment of the rain and wind climate with focus on wind turbine blade leading edge erosion rate and expected lifetime in Danish Seas," Renewable Energy, Elsevier, vol. 149(C), pages 91-102.
    11. Mishnaevsky, Leon & Hasager, Charlotte Bay & Bak, Christian & Tilg, Anna-Maria & Bech, Jakob I. & Doagou Rad, Saeed & Fæster, Søren, 2021. "Leading edge erosion of wind turbine blades: Understanding, prevention and protection," Renewable Energy, Elsevier, vol. 169(C), pages 953-969.
    12. Xiaohang Wang & Zhenbo Tang & Na Yan & Guojun Zhu, 2022. "Effect of Different Types of Erosion on the Aerodynamic Performance of Wind Turbine Airfoils," Sustainability, MDPI, vol. 14(19), pages 1-13, September.
    13. Verma, Amrit Shankar & Jiang, Zhiyu & Caboni, Marco & Verhoef, Hans & van der Mijle Meijer, Harald & Castro, Saullo G.P. & Teuwen, Julie J.E., 2021. "A probabilistic rainfall model to estimate the leading-edge lifetime of wind turbine blade coating system," Renewable Energy, Elsevier, vol. 178(C), pages 1435-1455.
    14. Lopez, Javier Contreras & Kolios, Athanasios, 2024. "An autonomous decision-making agent for offshore wind turbine blades under leading edge erosion," Renewable Energy, Elsevier, vol. 227(C).
    15. Charlotte Bay Hasager & Flemming Vejen & Witold Robert Skrzypiński & Anna-Maria Tilg, 2021. "Rain Erosion Load and Its Effect on Leading-Edge Lifetime and Potential of Erosion-Safe Mode at Wind Turbines in the North Sea and Baltic Sea," Energies, MDPI, vol. 14(7), pages 1-24, April.
    16. Ge, Mingwei & Sun, Haitao & Meng, Hang & Li, Xintao, 2024. "An improved B-L model for dynamic stall prediction of rough-surface airfoils," Renewable Energy, Elsevier, vol. 226(C).
    17. Koodly Ravishankara, Akshay & Özdemir, Huseyin & van der Weide, Edwin, 2021. "Analysis of leading edge erosion effects on turbulent flow over airfoils," Renewable Energy, Elsevier, vol. 172(C), pages 765-779.
    18. Sara C. Pryor & Rebecca J. Barthelmie & Jeremy Cadence & Ebba Dellwik & Charlotte B. Hasager & Stephan T. Kral & Joachim Reuder & Marianne Rodgers & Marijn Veraart, 2022. "Atmospheric Drivers of Wind Turbine Blade Leading Edge Erosion: Review and Recommendations for Future Research," Energies, MDPI, vol. 15(22), pages 1-41, November.
    19. Song, Kai & Shi, Jian & Yi, Xiaojian, 2020. "A time-discrete and zero-adjusted gamma process model with application to degradation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    20. Thomas Michael Welte & Iver Bakken Sperstad & Espen Høegh Sørum & Magne Lorentzen Kolstad, 2017. "Integration of Degradation Processes in a Strategic Offshore Wind Farm O&M Simulation Model," Energies, MDPI, vol. 10(7), pages 1-18, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7262-:d:671283. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.