A Fault Diagnosis Algorithm for the Dedicated Equipment Based on the CNN-LSTM Mechanism
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- ZhenHua Li & Yujie Zhang & Ahmed Abu-Siada & Xingxin Chen & Zhenxing Li & Yanchun Xu & Lei Zhang & Yue Tong, 2021. "Fault Diagnosis of Transformer Windings Based on Decision Tree and Fully Connected Neural Network," Energies, MDPI, vol. 14(6), pages 1-14, March.
- Lei, Jinhao & Liu, Chao & Jiang, Dongxiang, 2019. "Fault diagnosis of wind turbine based on Long Short-term memory networks," Renewable Energy, Elsevier, vol. 133(C), pages 422-432.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Meysam Beheshti Asl & Issouf Fofana & Fethi Meghnefi & Youssouf Brahami & Joao Pedro Da Costa Souza, 2025. "A Comprehensive Review of Transformer Winding Diagnostics: Integrating Frequency Response Analysis with Machine Learning Approaches," Energies, MDPI, vol. 18(5), pages 1-38, March.
- Xiaoxia Liang & Ming Zhang & Guojin Feng & Duo Wang & Yuchun Xu & Fengshou Gu, 2023. "Few-Shot Learning Approaches for Fault Diagnosis Using Vibration Data: A Comprehensive Review," Sustainability, MDPI, vol. 15(20), pages 1-17, October.
- Jianjun Chen & Weihao Hu & Di Cao & Bin Zhang & Qi Huang & Zhe Chen & Frede Blaabjerg, 2019. "An Imbalance Fault Detection Algorithm for Variable-Speed Wind Turbines: A Deep Learning Approach," Energies, MDPI, vol. 12(14), pages 1-15, July.
- Chen, Hansi & Liu, Hang & Chu, Xuening & Liu, Qingxiu & Xue, Deyi, 2021. "Anomaly detection and critical SCADA parameters identification for wind turbines based on LSTM-AE neural network," Renewable Energy, Elsevier, vol. 172(C), pages 829-840.
- Zemali, Zakaria & Cherroun, Lakhmissi & Hadroug, Nadji & Hafaifa, Ahmed & Iratni, Abdelhamid & Alshammari, Obaid S. & Colak, Ilhami, 2023. "Robust intelligent fault diagnosis strategy using Kalman observers and neuro-fuzzy systems for a wind turbine benchmark," Renewable Energy, Elsevier, vol. 205(C), pages 873-898.
- Sara Mantach & Abdulla Lutfi & Hamed Moradi Tavasani & Ahmed Ashraf & Ayman El-Hag & Behzad Kordi, 2022. "Deep Learning in High Voltage Engineering: A Literature Review," Energies, MDPI, vol. 15(14), pages 1-32, July.
- Xiaoxun, Zhu & Xinyu, Hang & Xiaoxia, Gao & Xing, Yang & Zixu, Xu & Yu, Wang & Huaxin, Liu, 2022. "Research on crack detection method of wind turbine blade based on a deep learning method," Applied Energy, Elsevier, vol. 328(C).
- Rameshrao, Awagan Goyal & Koley, Ebha & Ghosh, Subhojit, 2022. "A LSTM-based approach for detection of high impedance faults in hybrid microgrid with immunity against weather intermittency and N-1 contingency," Renewable Energy, Elsevier, vol. 198(C), pages 75-90.
- Rahimilarki, Reihane & Gao, Zhiwei & Jin, Nanlin & Zhang, Aihua, 2022. "Convolutional neural network fault classification based on time-series analysis for benchmark wind turbine machine," Renewable Energy, Elsevier, vol. 185(C), pages 916-931.
- Zhan, Jun & Wu, Chengkun & Yang, Canqun & Miao, Qiucheng & Wang, Shilin & Ma, Xiandong, 2022. "Condition monitoring of wind turbines based on spatial-temporal feature aggregation networks," Renewable Energy, Elsevier, vol. 200(C), pages 751-766.
- Annalisa Santolamazza & Daniele Dadi & Vito Introna, 2021. "A Data-Mining Approach for Wind Turbine Fault Detection Based on SCADA Data Analysis Using Artificial Neural Networks," Energies, MDPI, vol. 14(7), pages 1-25, March.
- Peng Qian & Xiange Tian & Jamil Kanfoud & Joash Lap Yan Lee & Tat-Hean Gan, 2019. "A Novel Condition Monitoring Method of Wind Turbines Based on Long Short-Term Memory Neural Network," Energies, MDPI, vol. 12(18), pages 1-15, September.
- Giuseppe Ciaburro & Gino Iannace, 2021. "Machine Learning-Based Algorithms to Knowledge Extraction from Time Series Data: A Review," Data, MDPI, vol. 6(6), pages 1-30, May.
- Zahra Yahyaoui & Mansour Hajji & Majdi Mansouri & Kamaleldin Abodayeh & Kais Bouzrara & Hazem Nounou, 2022. "Effective Fault Detection and Diagnosis for Power Converters in Wind Turbine Systems Using KPCA-Based BiLSTM," Energies, MDPI, vol. 15(17), pages 1-19, August.
- Xu, Zifei & Mei, Xuan & Wang, Xinyu & Yue, Minnan & Jin, Jiangtao & Yang, Yang & Li, Chun, 2022. "Fault diagnosis of wind turbine bearing using a multi-scale convolutional neural network with bidirectional long short term memory and weighted majority voting for multi-sensors," Renewable Energy, Elsevier, vol. 182(C), pages 615-626.
- Yan Xia & Feihong Yu & Xingzhong Xiong & Qinyuan Huang & Qijun Zhou, 2022. "A Novel Microgrid Islanding Detection Algorithm Based on a Multi-Feature Improved LSTM," Energies, MDPI, vol. 15(8), pages 1-24, April.
- Li, Yanting & Jiang, Wenbo & Zhang, Guangyao & Shu, Lianjie, 2021. "Wind turbine fault diagnosis based on transfer learning and convolutional autoencoder with small-scale data," Renewable Energy, Elsevier, vol. 171(C), pages 103-115.
- Dibaj, Ali & Gao, Zhen & Nejad, Amir R., 2023. "Fault detection of offshore wind turbine drivetrains in different environmental conditions through optimal selection of vibration measurements," Renewable Energy, Elsevier, vol. 203(C), pages 161-176.
- Adaiton Oliveira-Filho & Ryad Zemouri & Philippe Cambron & Antoine Tahan, 2023. "Early Detection and Diagnosis of Wind Turbine Abnormal Conditions Using an Interpretable Supervised Variational Autoencoder Model," Energies, MDPI, vol. 16(12), pages 1-21, June.
- Chang, Yuanhong & Chen, Jinglong & Qu, Cheng & Pan, Tongyang, 2020. "Intelligent fault diagnosis of Wind Turbines via a Deep Learning Network Using Parallel Convolution Layers with Multi-Scale Kernels," Renewable Energy, Elsevier, vol. 153(C), pages 205-213.
More about this item
Keywords
fault diagnosis; convolutional block attention module; deep learning; long short-term memory; convolutional neural network;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:5230-:d:1189139. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.