IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i14p2764-d249639.html
   My bibliography  Save this article

An Imbalance Fault Detection Algorithm for Variable-Speed Wind Turbines: A Deep Learning Approach

Author

Listed:
  • Jianjun Chen

    (School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China)

  • Weihao Hu

    (School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China)

  • Di Cao

    (School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China)

  • Bin Zhang

    (School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China)

  • Qi Huang

    (School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China)

  • Zhe Chen

    (Department of Energy Technology, Aalborg University, DK-9220 Aalborg, Denmark)

  • Frede Blaabjerg

    (Department of Energy Technology, Aalborg University, DK-9220 Aalborg, Denmark)

Abstract

Wind power penetration has increased rapidly in recent years. In winter, the wind turbine blade imbalance fault caused by ice accretion increase the maintenance costs of wind farms. It is necessary to detect the fault before blade breakage occurs. Preliminary analysis of time series simulation data shows that it is difficult to detect the imbalance faults by traditional mathematical methods, as there is little difference between normal and fault conditions. A deep learning method for wind turbine blade imbalance fault detection and classification is proposed in this paper. A long short-term memory (LSTM) neural network model is built to extract the characteristics of the fault signal. The attention mechanism is built into the LSTM to increase its performance. The simulation results show that the proposed approach can detect the imbalance fault with an accuracy of over 98%, which proves the effectiveness of the proposed approach on wind turbine blade imbalance fault detection.

Suggested Citation

  • Jianjun Chen & Weihao Hu & Di Cao & Bin Zhang & Qi Huang & Zhe Chen & Frede Blaabjerg, 2019. "An Imbalance Fault Detection Algorithm for Variable-Speed Wind Turbines: A Deep Learning Approach," Energies, MDPI, vol. 12(14), pages 1-15, July.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:14:p:2764-:d:249639
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/14/2764/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/14/2764/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Helbing, Georg & Ritter, Matthias, 2018. "Deep Learning for fault detection in wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 189-198.
    2. Santiago Salvador & Xurxo Costoya & Francisco Javier Sanz-Larruga & Luis Gimeno, 2018. "Development of Offshore Wind Power: Contrasting Optimal Wind Sites with Legal Restrictions in Galicia, Spain," Energies, MDPI, vol. 11(4), pages 1-25, March.
    3. Ozgener, Onder & Ozgener, Leyla, 2007. "Exergy and reliability analysis of wind turbine systems: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(8), pages 1811-1826, October.
    4. Wang, Huai-zhi & Li, Gang-qiang & Wang, Gui-bin & Peng, Jian-chun & Jiang, Hui & Liu, Yi-tao, 2017. "Deep learning based ensemble approach for probabilistic wind power forecasting," Applied Energy, Elsevier, vol. 188(C), pages 56-70.
    5. Lei, Jinhao & Liu, Chao & Jiang, Dongxiang, 2019. "Fault diagnosis of wind turbine based on Long Short-term memory networks," Renewable Energy, Elsevier, vol. 133(C), pages 422-432.
    6. Yang, Wenguang & Liu, Chao & Jiang, Dongxiang, 2018. "An unsupervised spatiotemporal graphical modeling approach for wind turbine condition monitoring," Renewable Energy, Elsevier, vol. 127(C), pages 230-241.
    7. Hameed, Z. & Hong, Y.S. & Cho, Y.M. & Ahn, S.H. & Song, C.K., 2009. "Condition monitoring and fault detection of wind turbines and related algorithms: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(1), pages 1-39, January.
    8. Wang, Ni & Li, Jian & Hu, Weihao & Zhang, Baohua & Huang, Qi & Chen, Zhe, 2019. "Optimal reactive power dispatch of a full-scale converter based wind farm considering loss minimization," Renewable Energy, Elsevier, vol. 139(C), pages 292-301.
    9. Seyed Mojtaba Tabatabaeipour & Peter F. Odgaard & Thomas Bak & Jakob Stoustrup, 2012. "Fault Detection of Wind Turbines with Uncertain Parameters: A Set-Membership Approach," Energies, MDPI, vol. 5(7), pages 1-25, July.
    10. Hur, S. & Recalde-Camacho, L. & Leithead, W.E., 2017. "Detection and compensation of anomalous conditions in a wind turbine," Energy, Elsevier, vol. 124(C), pages 74-86.
    11. David Silver & Aja Huang & Chris J. Maddison & Arthur Guez & Laurent Sifre & George van den Driessche & Julian Schrittwieser & Ioannis Antonoglou & Veda Panneershelvam & Marc Lanctot & Sander Dieleman, 2016. "Mastering the game of Go with deep neural networks and tree search," Nature, Nature, vol. 529(7587), pages 484-489, January.
    12. David Silver & Julian Schrittwieser & Karen Simonyan & Ioannis Antonoglou & Aja Huang & Arthur Guez & Thomas Hubert & Lucas Baker & Matthew Lai & Adrian Bolton & Yutian Chen & Timothy Lillicrap & Fan , 2017. "Mastering the game of Go without human knowledge," Nature, Nature, vol. 550(7676), pages 354-359, October.
    13. Entezami, M. & Hillmansen, S. & Weston, P. & Papaelias, M.Ph., 2012. "Fault detection and diagnosis within a wind turbine mechanical braking system using condition monitoring," Renewable Energy, Elsevier, vol. 47(C), pages 175-182.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuri Vankov & Aleksey Rumyantsev & Shamil Ziganshin & Tatyana Politova & Rinat Minyazev & Ayrat Zagretdinov, 2020. "Assessment of the Condition of Pipelines Using Convolutional Neural Networks," Energies, MDPI, vol. 13(3), pages 1-12, February.
    2. Hongwei Li & Kaide Ren & Shuaibing Li & Haiying Dong, 2020. "Adaptive Multi-Model Switching Predictive Active Power Control Scheme for Wind Generator System," Energies, MDPI, vol. 13(6), pages 1-12, March.
    3. Chatterjee, Joyjit & Dethlefs, Nina, 2021. "Scientometric review of artificial intelligence for operations & maintenance of wind turbines: The past, present and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    4. Jorge Maldonado-Correa & Sergio Martín-Martínez & Estefanía Artigao & Emilio Gómez-Lázaro, 2020. "Using SCADA Data for Wind Turbine Condition Monitoring: A Systematic Literature Review," Energies, MDPI, vol. 13(12), pages 1-21, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Habibi, Hamed & Howard, Ian & Simani, Silvio, 2019. "Reliability improvement of wind turbine power generation using model-based fault detection and fault tolerant control: A review," Renewable Energy, Elsevier, vol. 135(C), pages 877-896.
    2. Qiang Zhao & Kunkun Bao & Jia Wang & Yinghua Han & Jinkuan Wang, 2019. "An Online Hybrid Model for Temperature Prediction of Wind Turbine Gearbox Components," Energies, MDPI, vol. 12(20), pages 1-20, October.
    3. Yuchen Zhang & Wei Yang, 2022. "Breakthrough invention and problem complexity: Evidence from a quasi‐experiment," Strategic Management Journal, Wiley Blackwell, vol. 43(12), pages 2510-2544, December.
    4. Omar Al-Ani & Sanjoy Das, 2022. "Reinforcement Learning: Theory and Applications in HEMS," Energies, MDPI, vol. 15(17), pages 1-37, September.
    5. Jin, Xin & Ju, Wenbin & Zhang, Zhaolong & Guo, Lianxin & Yang, Xiangang, 2016. "System safety analysis of large wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1293-1307.
    6. Zhang, Yihao & Chai, Zhaojie & Lykotrafitis, George, 2021. "Deep reinforcement learning with a particle dynamics environment applied to emergency evacuation of a room with obstacles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    7. Jun Li & Wei Zhu & Jun Wang & Wenfei Li & Sheng Gong & Jian Zhang & Wei Wang, 2018. "RNA3DCNN: Local and global quality assessments of RNA 3D structures using 3D deep convolutional neural networks," PLOS Computational Biology, Public Library of Science, vol. 14(11), pages 1-18, November.
    8. Keller, Alexander & Dahm, Ken, 2019. "Integral equations and machine learning," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 161(C), pages 2-12.
    9. Adaiton Oliveira-Filho & Ryad Zemouri & Philippe Cambron & Antoine Tahan, 2023. "Early Detection and Diagnosis of Wind Turbine Abnormal Conditions Using an Interpretable Supervised Variational Autoencoder Model," Energies, MDPI, vol. 16(12), pages 1-21, June.
    10. Haoran Wang & Shi Yu, 2021. "Robo-Advising: Enhancing Investment with Inverse Optimization and Deep Reinforcement Learning," Papers 2105.09264, arXiv.org.
    11. Huy Chau & Duy Nguyen & Thai Nguyen, 2024. "Continuous-time optimal investment with portfolio constraints: a reinforcement learning approach," Papers 2412.10692, arXiv.org.
    12. Papini, Guglielmo & Faedo, Nicolás & Mattiazzo, Giuliana, 2024. "Fault diagnosis and fault-tolerant control in wave energy: A perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    13. Weifan Long & Taixian Hou & Xiaoyi Wei & Shichao Yan & Peng Zhai & Lihua Zhang, 2023. "A Survey on Population-Based Deep Reinforcement Learning," Mathematics, MDPI, vol. 11(10), pages 1-17, May.
    14. Yifeng Guo & Xingyu Fu & Yuyan Shi & Mingwen Liu, 2018. "Robust Log-Optimal Strategy with Reinforcement Learning," Papers 1805.00205, arXiv.org.
    15. Xueqing Yan & Yongming Li, 2023. "A Novel Discrete Differential Evolution with Varying Variables for the Deficiency Number of Mahjong Hand," Mathematics, MDPI, vol. 11(9), pages 1-21, May.
    16. Pujin Wang & Jianzhuang Xiao & Ken’ichi Kawaguchi & Lichen Wang, 2022. "Automatic Ceiling Damage Detection in Large-Span Structures Based on Computer Vision and Deep Learning," Sustainability, MDPI, vol. 14(6), pages 1-24, March.
    17. Lu Wang & Wenqing Ai & Tianhu Deng & Zuo‐Jun M. Shen & Changjing Hong, 2020. "Optimal production ramp‐up in the smartphone manufacturing industry," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(8), pages 685-704, December.
    18. Jorge Maldonado-Correa & Sergio Martín-Martínez & Estefanía Artigao & Emilio Gómez-Lázaro, 2020. "Using SCADA Data for Wind Turbine Condition Monitoring: A Systematic Literature Review," Energies, MDPI, vol. 13(12), pages 1-21, June.
    19. Yuchao Dong, 2022. "Randomized Optimal Stopping Problem in Continuous time and Reinforcement Learning Algorithm," Papers 2208.02409, arXiv.org, revised Sep 2023.
    20. Shijun Wang & Baocheng Zhu & Chen Li & Mingzhe Wu & James Zhang & Wei Chu & Yuan Qi, 2020. "Riemannian Proximal Policy Optimization," Computer and Information Science, Canadian Center of Science and Education, vol. 13(3), pages 1-93, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:14:p:2764-:d:249639. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.