Effective Fault Detection and Diagnosis for Power Converters in Wind Turbine Systems Using KPCA-Based BiLSTM
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Yang, Zhimin & Chai, Yi, 2016. "A survey of fault diagnosis for onshore grid-connected converter in wind energy conversion systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 345-359.
- Kouadri, Abdelmalek & Hajji, Mansour & Harkat, Mohamed-Faouzi & Abodayeh, Kamaleldin & Mansouri, Majdi & Nounou, Hazem & Nounou, Mohamed, 2020. "Hidden Markov model based principal component analysis for intelligent fault diagnosis of wind energy converter systems," Renewable Energy, Elsevier, vol. 150(C), pages 598-606.
- Lei, Jinhao & Liu, Chao & Jiang, Dongxiang, 2019. "Fault diagnosis of wind turbine based on Long Short-term memory networks," Renewable Energy, Elsevier, vol. 133(C), pages 422-432.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zahra Yahyaoui & Mansour Hajji & Majdi Mansouri & Kais Bouzrara, 2023. "One-Class Machine Learning Classifiers-Based Multivariate Feature Extraction for Grid-Connected PV Systems Monitoring under Irradiance Variations," Sustainability, MDPI, vol. 15(18), pages 1-20, September.
- Khadija Attouri & Majdi Mansouri & Mansour Hajji & Abdelmalek Kouadri & Kais Bouzrara & Hazem Nounou, 2023. "Wind Power Converter Fault Diagnosis Using Reduced Kernel PCA-Based BiLSTM," Sustainability, MDPI, vol. 15(4), pages 1-19, February.
- Meijin Lin & Yuliang Luo & Senjie Chen & Zhirong Qiu & Zibin Dai, 2024. "Low-Voltage Biological Electric Shock Fault Diagnosis Based on the Attention Mechanism Fusion Parallel Convolutional Neural Network/Bidirectional Long Short-Term Memory Model," Mathematics, MDPI, vol. 12(24), pages 1-15, December.
- Yang, Mao & Guo, Yunfeng & Huang, Yutong, 2023. "Wind power ultra-short-term prediction method based on NWP wind speed correction and double clustering division of transitional weather process," Energy, Elsevier, vol. 282(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Arpad Gellert & Stefan-Alexandru Precup & Alexandru Matei & Bogdan-Constantin Pirvu & Constantin-Bala Zamfirescu, 2022. "Real-Time Assembly Support System with Hidden Markov Model and Hybrid Extensions," Mathematics, MDPI, vol. 10(15), pages 1-21, August.
- Jianjun Chen & Weihao Hu & Di Cao & Bin Zhang & Qi Huang & Zhe Chen & Frede Blaabjerg, 2019. "An Imbalance Fault Detection Algorithm for Variable-Speed Wind Turbines: A Deep Learning Approach," Energies, MDPI, vol. 12(14), pages 1-15, July.
- Zhannan Guo & Yinlin Hao & Hanwen Shi & Zhenyu Wu & Yuhu Wu & Ximing Sun, 2023. "A Fault Diagnosis Algorithm for the Dedicated Equipment Based on the CNN-LSTM Mechanism," Energies, MDPI, vol. 16(13), pages 1-16, July.
- Guilherme V. Hollweg & Shahid A. Khan & Shivam Chaturvedi & Yaoyu Fan & Mengqi Wang & Wencong Su, 2023. "Grid-Connected Converters: A Brief Survey of Topologies, Output Filters, Current Control, and Weak Grids Operation," Energies, MDPI, vol. 16(9), pages 1-31, April.
- Artigao, Estefania & Martín-Martínez, Sergio & Honrubia-Escribano, Andrés & Gómez-Lázaro, Emilio, 2018. "Wind turbine reliability: A comprehensive review towards effective condition monitoring development," Applied Energy, Elsevier, vol. 228(C), pages 1569-1583.
- Shi, Jihao & Li, Junjie & Usmani, Asif Sohail & Zhu, Yuan & Chen, Guoming & Yang, Dongdong, 2021. "Probabilistic real-time deep-water natural gas hydrate dispersion modeling by using a novel hybrid deep learning approach," Energy, Elsevier, vol. 219(C).
- Chen, Hansi & Liu, Hang & Chu, Xuening & Liu, Qingxiu & Xue, Deyi, 2021. "Anomaly detection and critical SCADA parameters identification for wind turbines based on LSTM-AE neural network," Renewable Energy, Elsevier, vol. 172(C), pages 829-840.
- Yolanda Vidal & Francesc Pozo & Christian Tutivén, 2018. "Wind Turbine Multi-Fault Detection and Classification Based on SCADA Data," Energies, MDPI, vol. 11(11), pages 1-18, November.
- Zemali, Zakaria & Cherroun, Lakhmissi & Hadroug, Nadji & Hafaifa, Ahmed & Iratni, Abdelhamid & Alshammari, Obaid S. & Colak, Ilhami, 2023. "Robust intelligent fault diagnosis strategy using Kalman observers and neuro-fuzzy systems for a wind turbine benchmark," Renewable Energy, Elsevier, vol. 205(C), pages 873-898.
- Michael W. Hopwood & Lekha Patel & Thushara Gunda, 2022. "Classification of Photovoltaic Failures with Hidden Markov Modeling, an Unsupervised Statistical Approach," Energies, MDPI, vol. 15(14), pages 1-12, July.
- Sondes Gharsellaoui & Majdi Mansouri & Shady S. Refaat & Haitham Abu-Rub & Hassani Messaoud, 2020. "Multivariate Features Extraction and Effective Decision Making Using Machine Learning Approaches," Energies, MDPI, vol. 13(3), pages 1-16, January.
- Kouadri, Abdelmalek & Hajji, Mansour & Harkat, Mohamed-Faouzi & Abodayeh, Kamaleldin & Mansouri, Majdi & Nounou, Hazem & Nounou, Mohamed, 2020. "Hidden Markov model based principal component analysis for intelligent fault diagnosis of wind energy converter systems," Renewable Energy, Elsevier, vol. 150(C), pages 598-606.
- Shrabani Sahu & Sasmita Behera, 2022. "A review on modern control applications in wind energy conversion system," Energy & Environment, , vol. 33(2), pages 223-262, March.
- Xiaoxun, Zhu & Xinyu, Hang & Xiaoxia, Gao & Xing, Yang & Zixu, Xu & Yu, Wang & Huaxin, Liu, 2022. "Research on crack detection method of wind turbine blade based on a deep learning method," Applied Energy, Elsevier, vol. 328(C).
- Dhibi, Khaled & Mansouri, Majdi & Bouzrara, Kais & Nounou, Hazem & Nounou, Mohamed, 2022. "Reduced neural network based ensemble approach for fault detection and diagnosis of wind energy converter systems," Renewable Energy, Elsevier, vol. 194(C), pages 778-787.
- Rameshrao, Awagan Goyal & Koley, Ebha & Ghosh, Subhojit, 2022. "A LSTM-based approach for detection of high impedance faults in hybrid microgrid with immunity against weather intermittency and N-1 contingency," Renewable Energy, Elsevier, vol. 198(C), pages 75-90.
- Rahimilarki, Reihane & Gao, Zhiwei & Jin, Nanlin & Zhang, Aihua, 2022. "Convolutional neural network fault classification based on time-series analysis for benchmark wind turbine machine," Renewable Energy, Elsevier, vol. 185(C), pages 916-931.
- Zhan, Jun & Wu, Chengkun & Yang, Canqun & Miao, Qiucheng & Wang, Shilin & Ma, Xiandong, 2022. "Condition monitoring of wind turbines based on spatial-temporal feature aggregation networks," Renewable Energy, Elsevier, vol. 200(C), pages 751-766.
- Annalisa Santolamazza & Daniele Dadi & Vito Introna, 2021. "A Data-Mining Approach for Wind Turbine Fault Detection Based on SCADA Data Analysis Using Artificial Neural Networks," Energies, MDPI, vol. 14(7), pages 1-25, March.
- Majdi Mansouri & Khaled Dhibi & Hazem Nounou & Mohamed Nounou, 2022. "An Effective Fault Diagnosis Technique for Wind Energy Conversion Systems Based on an Improved Particle Swarm Optimization," Sustainability, MDPI, vol. 14(18), pages 1-11, September.
More about this item
Keywords
wind energy conversion (WEC); fault detection and diagnosis (FDD); kernel PCA (KPCA); bidirectional long short term memory (BiLSTM);All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6127-:d:895787. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.