Damage identification of wind turbine blades with deep convolutional neural networks
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2021.04.040
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Yang, Bin & Sun, Dongbai, 2013. "Testing, inspecting and monitoring technologies for wind turbine blades: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 515-526.
- Lei, Jinhao & Liu, Chao & Jiang, Dongxiang, 2019. "Fault diagnosis of wind turbine based on Long Short-term memory networks," Renewable Energy, Elsevier, vol. 133(C), pages 422-432.
- Ozbek, Muammer & Rixen, Daniel J. & Erne, Oliver & Sanow, Gunter, 2010. "Feasibility of monitoring large wind turbines using photogrammetry," Energy, Elsevier, vol. 35(12), pages 4802-4811.
- Pierre Tchakoua & René Wamkeue & Mohand Ouhrouche & Fouad Slaoui-Hasnaoui & Tommy Andy Tameghe & Gabriel Ekemb, 2014. "Wind Turbine Condition Monitoring: State-of-the-Art Review, New Trends, and Future Challenges," Energies, MDPI, vol. 7(4), pages 1-36, April.
- Tang, Jialin & Soua, Slim & Mares, Cristinel & Gan, Tat-Hean, 2016. "An experimental study of acoustic emission methodology for in service condition monitoring of wind turbine blades," Renewable Energy, Elsevier, vol. 99(C), pages 170-179.
- García Márquez, Fausto Pedro & Tobias, Andrew Mark & Pinar Pérez, Jesús María & Papaelias, Mayorkinos, 2012. "Condition monitoring of wind turbines: Techniques and methods," Renewable Energy, Elsevier, vol. 46(C), pages 169-178.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Chiara Furio & Luciano Lamberti & Catalin I. Pruncu, 2024. "Mechanical and Civil Engineering Optimization with a Very Simple Hybrid Grey Wolf—JAYA Metaheuristic Optimizer," Mathematics, MDPI, vol. 12(22), pages 1-68, November.
- Xiaoxun, Zhu & Xinyu, Hang & Xiaoxia, Gao & Xing, Yang & Zixu, Xu & Yu, Wang & Huaxin, Liu, 2022. "Research on crack detection method of wind turbine blade based on a deep learning method," Applied Energy, Elsevier, vol. 328(C).
- Dimitris Al. Katsaprakakis & Nikos Papadakis & Ioannis Ntintakis, 2021. "A Comprehensive Analysis of Wind Turbine Blade Damage," Energies, MDPI, vol. 14(18), pages 1-31, September.
- Zengyi Zhang & Zhenru Shu, 2024. "Unmanned Aerial Vehicle (UAV)-Assisted Damage Detection of Wind Turbine Blades: A Review," Energies, MDPI, vol. 17(15), pages 1-31, July.
- Hang, Xinyu & Zhu, Xiaoxun & Gao, Xiaoxia & Wang, Yu & Liu, Longhu, 2024. "Study on crack monitoring method of wind turbine blade based on AI model: Integration of classification, detection, segmentation and fault level evaluation," Renewable Energy, Elsevier, vol. 224(C).
- Sun, Shilin & Wang, Tianyang & Chu, Fulei, 2022. "In-situ condition monitoring of wind turbine blades: A critical and systematic review of techniques, challenges, and futures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
- Xiaowen Song & Zhitai Xing & Yan Jia & Xiaojuan Song & Chang Cai & Yinan Zhang & Zekun Wang & Jicai Guo & Qingan Li, 2022. "Review on the Damage and Fault Diagnosis of Wind Turbine Blades in the Germination Stage," Energies, MDPI, vol. 15(20), pages 1-17, October.
- Artur Bejger & Jan Bohdan Drzewieniecki & Przemysław Bartoszko & Ewelina Frank, 2023. "The Use of Coherence Functions of Acoustic Emission Signals as a Method for Diagnosing Wind Turbine Blades," Energies, MDPI, vol. 16(22), pages 1-17, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jijian Lian & Ou Cai & Xiaofeng Dong & Qi Jiang & Yue Zhao, 2019. "Health Monitoring and Safety Evaluation of the Offshore Wind Turbine Structure: A Review and Discussion of Future Development," Sustainability, MDPI, vol. 11(2), pages 1-29, January.
- Wenjie Wang & Yu Xue & Chengkuan He & Yongnian Zhao, 2022. "Review of the Typical Damage and Damage-Detection Methods of Large Wind Turbine Blades," Energies, MDPI, vol. 15(15), pages 1-31, August.
- Chandrasekhar, Kartik & Stevanovic, Nevena & Cross, Elizabeth J. & Dervilis, Nikolaos & Worden, Keith, 2021. "Damage detection in operational wind turbine blades using a new approach based on machine learning," Renewable Energy, Elsevier, vol. 168(C), pages 1249-1264.
- Yang, Xiyun & Zhang, Yanfeng & Lv, Wei & Wang, Dong, 2021. "Image recognition of wind turbine blade damage based on a deep learning model with transfer learning and an ensemble learning classifier," Renewable Energy, Elsevier, vol. 163(C), pages 386-397.
- Kaewniam, Panida & Cao, Maosen & Alkayem, Nizar Faisal & Li, Dayang & Manoach, Emil, 2022. "Recent advances in damage detection of wind turbine blades: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
- Chen, Xuejun & Yang, Yongming & Cui, Zhixin & Shen, Jun, 2019. "Vibration fault diagnosis of wind turbines based on variational mode decomposition and energy entropy," Energy, Elsevier, vol. 174(C), pages 1100-1109.
- Beganovic, Nejra & Söffker, Dirk, 2016. "Structural health management utilization for lifetime prognosis and advanced control strategy deployment of wind turbines: An overview and outlook concerning actual methods, tools, and obtained result," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 68-83.
- Ruiz de la Hermosa González-Carrato, Raúl & García Márquez, Fausto Pedro & Dimlaye, Vichaar, 2015. "Maintenance management of wind turbines structures via MFCs and wavelet transforms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 472-482.
- Moynihan, Bridget & Moaveni, Babak & Liberatore, Sauro & Hines, Eric, 2022. "Estimation of blade forces in wind turbines using blade root strain measurements with OpenFAST verification," Renewable Energy, Elsevier, vol. 184(C), pages 662-676.
- Stetco, Adrian & Dinmohammadi, Fateme & Zhao, Xingyu & Robu, Valentin & Flynn, David & Barnes, Mike & Keane, John & Nenadic, Goran, 2019. "Machine learning methods for wind turbine condition monitoring: A review," Renewable Energy, Elsevier, vol. 133(C), pages 620-635.
- Zhou, H.F. & Zheng, J.F. & Xie, Z.L. & Lu, L.J. & Ni, Y.Q. & Ko, J.M., 2017. "Temperature effects on vision measurement system in long-term continuous monitoring of displacement," Renewable Energy, Elsevier, vol. 114(PB), pages 968-983.
- Kong, Yun & Wang, Tianyang & Feng, Zhipeng & Chu, Fulei, 2020. "Discriminative dictionary learning based sparse representation classification for intelligent fault identification of planet bearings in wind turbine," Renewable Energy, Elsevier, vol. 152(C), pages 754-769.
- Artigao, Estefania & Martín-Martínez, Sergio & Honrubia-Escribano, Andrés & Gómez-Lázaro, Emilio, 2018. "Wind turbine reliability: A comprehensive review towards effective condition monitoring development," Applied Energy, Elsevier, vol. 228(C), pages 1569-1583.
- Zemali, Zakaria & Cherroun, Lakhmissi & Hadroug, Nadji & Hafaifa, Ahmed & Iratni, Abdelhamid & Alshammari, Obaid S. & Colak, Ilhami, 2023. "Robust intelligent fault diagnosis strategy using Kalman observers and neuro-fuzzy systems for a wind turbine benchmark," Renewable Energy, Elsevier, vol. 205(C), pages 873-898.
- Zengyi Zhang & Zhenru Shu, 2024. "Unmanned Aerial Vehicle (UAV)-Assisted Damage Detection of Wind Turbine Blades: A Review," Energies, MDPI, vol. 17(15), pages 1-31, July.
- Romero, Antonio & Soua, Slim & Gan, Tat-Hean & Wang, Bin, 2018. "Condition monitoring of a wind turbine drive train based on its power dependant vibrations," Renewable Energy, Elsevier, vol. 123(C), pages 817-827.
- Xiaowen Song & Zhitai Xing & Yan Jia & Xiaojuan Song & Chang Cai & Yinan Zhang & Zekun Wang & Jicai Guo & Qingan Li, 2022. "Review on the Damage and Fault Diagnosis of Wind Turbine Blades in the Germination Stage," Energies, MDPI, vol. 15(20), pages 1-17, October.
- Hsu-Hao Yang & Mei-Ling Huang & Shih-Wei Yang, 2015. "Integrating Auto-Associative Neural Networks with Hotelling T 2 Control Charts for Wind Turbine Fault Detection," Energies, MDPI, vol. 8(10), pages 1-16, October.
- Xiaoxun, Zhu & Xinyu, Hang & Xiaoxia, Gao & Xing, Yang & Zixu, Xu & Yu, Wang & Huaxin, Liu, 2022. "Research on crack detection method of wind turbine blade based on a deep learning method," Applied Energy, Elsevier, vol. 328(C).
- Pliego Marugán, Alberto & Peco Chacón, Ana MarÃa & GarcÃa Márquez, Fausto Pedro, 2019. "Reliability analysis of detecting false alarms that employ neural networks: A real case study on wind turbines," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
More about this item
Keywords
Wind turbine blade; Defects detection; Deep learning; Haar-like features; Object detection;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:174:y:2021:i:c:p:122-133. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.