IDEAS home Printed from https://ideas.repec.org/r/eee/jmvana/v13y1983i3p425-441.html
   My bibliography  Save this item

Central limit theorems for non-linear functionals of Gaussian fields

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Miguel A. Arcones, 1999. "The Law of the Iterated Logarithm over a Stationary Gaussian Sequence of Random Vectors," Journal of Theoretical Probability, Springer, vol. 12(3), pages 615-641, July.
  2. Arcones, Miguel A., 2000. "Distributional limit theorems over a stationary Gaussian sequence of random vectors," Stochastic Processes and their Applications, Elsevier, vol. 88(1), pages 135-159, July.
  3. Abry, Patrice & Didier, Gustavo, 2018. "Wavelet eigenvalue regression for n-variate operator fractional Brownian motion," Journal of Multivariate Analysis, Elsevier, vol. 168(C), pages 75-104.
  4. Berzin-Joseph, Corinne & León, José R. & Ortega, Joaquín, 2001. "Non-linear functionals of the Brownian bridge and some applications," Stochastic Processes and their Applications, Elsevier, vol. 92(1), pages 11-30, March.
  5. Johann Gehringer & Xue-Mei Li, 2022. "Functional Limit Theorems for the Fractional Ornstein–Uhlenbeck Process," Journal of Theoretical Probability, Springer, vol. 35(1), pages 426-456, March.
  6. Mikko S. Pakkanen & Anthony Réveillac, 2014. "Functional limit theorems for generalized variations of the fractional Brownian sheet," CREATES Research Papers 2014-14, Department of Economics and Business Economics, Aarhus University.
  7. Pauliina Ilmonen & Soledad Torres & Lauri Viitasaari, 2020. "Oscillating Gaussian processes," Statistical Inference for Stochastic Processes, Springer, vol. 23(3), pages 571-593, October.
  8. Shevchenko, Radomyra & Todino, Anna Paola, 2023. "Asymptotic behaviour of level sets of needlet random fields," Stochastic Processes and their Applications, Elsevier, vol. 155(C), pages 268-318.
  9. Araya, Héctor & Tudor, Ciprian A., 2019. "Behavior of the Hermite sheet with respect to theHurst index," Stochastic Processes and their Applications, Elsevier, vol. 129(7), pages 2582-2605.
  10. Harnett, Daniel & Nualart, David, 2018. "Central limit theorem for functionals of a generalized self-similar Gaussian process," Stochastic Processes and their Applications, Elsevier, vol. 128(2), pages 404-425.
  11. N. N. Leonenko & M. D. Ruiz-Medina, 2008. "Gaussian Scenario for the Heat Equation with Quadratic Potential and Weakly Dependent Data with Applications," Methodology and Computing in Applied Probability, Springer, vol. 10(4), pages 595-620, December.
  12. Kerstin Gärtner & Mark Podolskij, 2014. "On non-standard limits of Brownian semi-stationary," CREATES Research Papers 2014-50, Department of Economics and Business Economics, Aarhus University.
  13. Nourdin, Ivan & Peccati, Giovanni & Podolskij, Mark, 2011. "Quantitative Breuer-Major theorems," Stochastic Processes and their Applications, Elsevier, vol. 121(4), pages 793-812, April.
  14. Tudor, Ciprian A. & Yoshida, Nakahiro, 2019. "Asymptotic expansion for vector-valued sequences of random variables with focus on Wiener chaos," Stochastic Processes and their Applications, Elsevier, vol. 129(9), pages 3499-3526.
  15. Joachim Lebovits & Mark Podolskij, 2016. "Estimation of the global regularity of a multifractional Brownian motion," CREATES Research Papers 2016-33, Department of Economics and Business Economics, Aarhus University.
  16. Bai, Shuyang & Taqqu, Murad S., 2016. "Short-range dependent processes subordinated to the Gaussian may not be strong mixing," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 198-200.
  17. León, José & Ludeña, Carenne, 2007. "Limits for weighted p-variations and likewise functionals of fractional diffusions with drift," Stochastic Processes and their Applications, Elsevier, vol. 117(3), pages 271-296, March.
  18. Patrice Abry & Gustavo Didier & Hui Li, 2019. "Two-step wavelet-based estimation for Gaussian mixed fractional processes," Statistical Inference for Stochastic Processes, Springer, vol. 22(2), pages 157-185, July.
  19. Giraitis, Liudas & Robinson, Peter M., 1998. "Variance-type estimation of long memory," LSE Research Online Documents on Economics 2327, London School of Economics and Political Science, LSE Library.
  20. Kouritzin, Michael A. & Paul, Sounak, 2022. "On almost sure limit theorems for heavy-tailed products of long-range dependent linear processes," Stochastic Processes and their Applications, Elsevier, vol. 152(C), pages 208-232.
  21. Ehsan Azmoodeh & Yuliya Mishura & Farzad Sabzikar, 2022. "How Does Tempering Affect the Local and Global Properties of Fractional Brownian Motion?," Journal of Theoretical Probability, Springer, vol. 35(1), pages 484-527, March.
  22. Ivan Nourdin & David Nualart, 2010. "Central Limit Theorems for Multiple Skorokhod Integrals," Journal of Theoretical Probability, Springer, vol. 23(1), pages 39-64, March.
  23. Obayda Assaad & Ciprian A. Tudor, 2020. "Parameter identification for the Hermite Ornstein–Uhlenbeck process," Statistical Inference for Stochastic Processes, Springer, vol. 23(2), pages 251-270, July.
  24. Gärtner, Kerstin & Podolskij, Mark, 2015. "On non-standard limits of Brownian semi-stationary processes," Stochastic Processes and their Applications, Elsevier, vol. 125(2), pages 653-677.
  25. Mikkel Bennedsen, 2016. "Semiparametric inference on the fractal index of Gaussian and conditionally Gaussian time series data," Papers 1608.01895, arXiv.org, revised Mar 2018.
  26. Debashis Mondal & Donald Percival, 2010. "Wavelet variance analysis for gappy time series," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(5), pages 943-966, October.
  27. Ben Hariz, Samir, 2005. "Uniform CLT for empirical process," Stochastic Processes and their Applications, Elsevier, vol. 115(2), pages 339-358, February.
  28. Surgailis, Donatas & Teyssière, Gilles & Vaiciulis, Marijus, 2008. "The increment ratio statistic," Journal of Multivariate Analysis, Elsevier, vol. 99(3), pages 510-541, March.
  29. Bai, Shuyang & Taqqu, Murad S., 2019. "Sensitivity of the Hermite rank," Stochastic Processes and their Applications, Elsevier, vol. 129(3), pages 822-840.
  30. Coeurjolly, Jean-François & Porcu, Emilio, 2017. "Properties and Hurst exponent estimation of the circularly-symmetric fractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 128(C), pages 21-27.
  31. Bai, Shuyang & Taqqu, Murad S. & Zhang, Ting, 2016. "A unified approach to self-normalized block sampling," Stochastic Processes and their Applications, Elsevier, vol. 126(8), pages 2465-2493.
  32. Giraitis, Liudas & Robinson, Peter M. & Surgailis, Donatas, 1999. "Variance-type estimation of long memory," Stochastic Processes and their Applications, Elsevier, vol. 80(1), pages 1-24, March.
  33. C. Lévy-Leduc & M. Taqqu, 2014. "Hermite ranks and $$U$$ U -statistics," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 77(1), pages 105-136, January.
  34. Bibinger, Markus, 2020. "Cusum tests for changes in the Hurst exponent and volatility of fractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 161(C).
  35. Malte Knüppel, 2015. "Evaluating the Calibration of Multi-Step-Ahead Density Forecasts Using Raw Moments," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(2), pages 270-281, April.
  36. Andriy Olenko & Dareen Omari, 2020. "Reduction Principle for Functionals of Vector Random Fields," Methodology and Computing in Applied Probability, Springer, vol. 22(2), pages 573-598, June.
  37. Mikkel Bennedsen & Ulrich Hounyo & Asger Lunde & Mikko S. Pakkanen, 2016. "The Local Fractional Bootstrap," CREATES Research Papers 2016-15, Department of Economics and Business Economics, Aarhus University.
  38. Bégyn, Arnaud, 2007. "Functional limit theorems for generalized quadratic variations of Gaussian processes," Stochastic Processes and their Applications, Elsevier, vol. 117(12), pages 1848-1869, December.
  39. Ivan Nourdin & Murad S. Taqqu, 2014. "Central and Non-central Limit Theorems in a Free Probability Setting," Journal of Theoretical Probability, Springer, vol. 27(1), pages 220-248, March.
  40. Mikkel Bennedsen, 2016. "Semiparametric inference on the fractal index of Gaussian and conditionally Gaussian time series data," CREATES Research Papers 2016-21, Department of Economics and Business Economics, Aarhus University.
  41. Marco Dozzi & Yuliya Mishura & Georgiy Shevchenko, 2015. "Asymptotic behavior of mixed power variations and statistical estimation in mixed models," Statistical Inference for Stochastic Processes, Springer, vol. 18(2), pages 151-175, July.
  42. Bennedsen, Mikkel & Lunde, Asger & Shephard, Neil & Veraart, Almut E.D., 2023. "Inference and forecasting for continuous-time integer-valued trawl processes," Journal of Econometrics, Elsevier, vol. 236(2).
  43. Ciprian A. Tudor & Nakahiro Yoshida, 2020. "Asymptotic expansion of the quadratic variation of a mixed fractional Brownian motion," Statistical Inference for Stochastic Processes, Springer, vol. 23(2), pages 435-463, July.
  44. Hariz, Samir Ben, 2002. "Limit Theorems for the Non-linear Functional of Stationary Gaussian Processes," Journal of Multivariate Analysis, Elsevier, vol. 80(2), pages 191-216, February.
  45. Coeurjolly, Jean-François, 2008. "Bahadur representation of sample quantiles for functional of Gaussian dependent sequences under a minimal assumption," Statistics & Probability Letters, Elsevier, vol. 78(15), pages 2485-2489, October.
  46. Nicholas Ma & David Nualart, 2020. "Rate of Convergence for the Weighted Hermite Variations of the Fractional Brownian Motion," Journal of Theoretical Probability, Springer, vol. 33(4), pages 1919-1947, December.
  47. Nourdin, Ivan & Nualart, David & Peccati, Giovanni, 2021. "The Breuer–Major theorem in total variation: Improved rates under minimal regularity," Stochastic Processes and their Applications, Elsevier, vol. 131(C), pages 1-20.
  48. Shuyang Bai & Murad S. Taqqu, 2013. "Multivariate Limit Theorems In The Context Of Long-Range Dependence," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(6), pages 717-743, November.
  49. Shuyang Bai & Murad S. Taqqu, 2016. "The Universality of Homogeneous Polynomial Forms and Critical Limits," Journal of Theoretical Probability, Springer, vol. 29(4), pages 1710-1727, December.
  50. José Manuel Corcuera, 2012. "New Central Limit Theorems for Functionals of Gaussian Processes and their Applications," Methodology and Computing in Applied Probability, Springer, vol. 14(3), pages 477-500, September.
  51. Jan Gairing & Peter Imkeller & Radomyra Shevchenko & Ciprian Tudor, 2020. "Hurst Index Estimation in Stochastic Differential Equations Driven by Fractional Brownian Motion," Journal of Theoretical Probability, Springer, vol. 33(3), pages 1691-1714, September.
  52. Pilipauskaitė, Vytautė & Surgailis, Donatas, 2017. "Scaling transition for nonlinear random fields with long-range dependence," Stochastic Processes and their Applications, Elsevier, vol. 127(8), pages 2751-2779.
  53. Zacharias Psaradakis, 2010. "On inference based on the one-sample sign statistic for long-range dependent data," Computational Statistics, Springer, vol. 25(2), pages 329-340, June.
  54. Doukhan, P. & Pommeret, D. & Reboul, L., 2015. "Data driven smooth test of comparison for dependent sequences," Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 147-165.
  55. Sibbertsen, Philipp, 2000. "Robust CUSUM-M test in the presence of long-memory disturbances," Technical Reports 2000,19, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
  56. Marie F. Kratz & José R. León, 2001. "Central Limit Theorems for Level Functionals of Stationary Gaussian Processes and Fields," Journal of Theoretical Probability, Springer, vol. 14(3), pages 639-672, July.
  57. Yuan, Jun & Nian, Victor & He, Junliang & Yan, Wei, 2019. "Cost-effectiveness analysis of energy efficiency measures for maritime shipping using a metamodel based approach with different data sources," Energy, Elsevier, vol. 189(C).
  58. G. Oppenheim & M. Haye & M.-C. Viano, 2000. "Long Memory with Seasonal Effects," Statistical Inference for Stochastic Processes, Springer, vol. 3(1), pages 53-68, January.
  59. Anna Vidotto, 2020. "An Improved Second-Order Poincaré Inequality for Functionals of Gaussian Fields," Journal of Theoretical Probability, Springer, vol. 33(1), pages 396-427, March.
  60. Voutilainen, Marko & Ilmonen, Pauliina & Viitasaari, Lauri & Lietzén, Niko, 2023. "Note on asymptotic behavior of spatial sign autocovariance matrices," Statistics & Probability Letters, Elsevier, vol. 192(C).
  61. Marinucci, Domenico & Peccati, Giovanni, 2008. "High-frequency asymptotics for subordinated stationary fields on an Abelian compact group," Stochastic Processes and their Applications, Elsevier, vol. 118(4), pages 585-613, April.
  62. Jaramillo, Arturo & Nualart, David, 2017. "Asymptotic properties of the derivative of self-intersection local time of fractional Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 127(2), pages 669-700.
  63. Beran, Jan & Weiershäuser, Arno, 2011. "On spline regression under Gaussian subordination with long memory," Journal of Multivariate Analysis, Elsevier, vol. 102(2), pages 315-335, February.
  64. Andreas Basse-O'Connor & Raphaël Lachièze-Rey & Mark Podolskij, 2015. "Limit theorems for stationary increments Lévy driven moving averages," CREATES Research Papers 2015-56, Department of Economics and Business Economics, Aarhus University.
  65. Jun Yuan & Haowei Wang & Szu Hui Ng & Victor Nian, 2020. "Ship Emission Mitigation Strategies Choice Under Uncertainty," Energies, MDPI, vol. 13(9), pages 1-20, May.
  66. Andreas Neuenkirch & Ivan Nourdin, 2007. "Exact Rate of Convergence of Some Approximation Schemes Associated to SDEs Driven by a Fractional Brownian Motion," Journal of Theoretical Probability, Springer, vol. 20(4), pages 871-899, December.
  67. Bercu, Bernard & Nourdin, Ivan & Taqqu, Murad S., 2010. "Almost sure central limit theorems on the Wiener space," Stochastic Processes and their Applications, Elsevier, vol. 120(9), pages 1607-1628, August.
  68. Debashis Mondal & Donald Percival, 2012. "M-estimation of wavelet variance," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(1), pages 27-53, February.
  69. Nualart, D. & Ortiz-Latorre, S., 2008. "Central limit theorems for multiple stochastic integrals and Malliavin calculus," Stochastic Processes and their Applications, Elsevier, vol. 118(4), pages 614-628, April.
  70. Ivan Nourdin & Giovanni Peccati & Xiaochuan Yang, 2022. "Multivariate Normal Approximation on the Wiener Space: New Bounds in the Convex Distance," Journal of Theoretical Probability, Springer, vol. 35(3), pages 2020-2037, September.
  71. Anh, V. V. & Leonenko, N. N., 1999. "Non-Gaussian scenarios for the heat equation with singular initial conditions," Stochastic Processes and their Applications, Elsevier, vol. 84(1), pages 91-114, November.
  72. Mikkel Bennedsen & Ulrich Hounyo & Asger Lunde & Mikko S. Pakkanen, 2016. "The Local Fractional Bootstrap," Papers 1605.00868, arXiv.org, revised Oct 2017.
  73. Bardet, Jean-Marc & Tudor, Ciprian, 2014. "Asymptotic behavior of the Whittle estimator for the increments of a Rosenblatt process," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 1-16.
  74. Soulier, Philippe, 2001. "Moment bounds and central limit theorem for functions of Gaussian vectors," Statistics & Probability Letters, Elsevier, vol. 54(2), pages 193-203, September.
  75. Hwai-Chung, Ho, 1996. "On central and non-central limit theorems in density estimation for sequences of long-range dependence," Stochastic Processes and their Applications, Elsevier, vol. 63(2), pages 153-174, November.
  76. Mark Podolskij, 2014. "Ambit fields: survey and new challenges," CREATES Research Papers 2014-51, Department of Economics and Business Economics, Aarhus University.
  77. Bardet, Jean-Marc & Surgailis, Donatas, 2013. "Moment bounds and central limit theorems for Gaussian subordinated arrays," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 457-473.
  78. Kim, Yoon Tae & Park, Hyun Suk, 2015. "Convergence rate of CLT for the estimation of Hurst parameter of fractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 105(C), pages 181-188.
  79. Elena Di Bernardino & Céline Duval, 2022. "Statistics for Gaussian random fields with unknown location and scale using Lipschitz‐Killing curvatures," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(1), pages 143-184, March.
  80. Corcuera, José Manuel & Hedevang, Emil & Pakkanen, Mikko S. & Podolskij, Mark, 2013. "Asymptotic theory for Brownian semi-stationary processes with application to turbulence," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2552-2574.
  81. Liudas Giraitis & Peter M Robinson, 1998. "Variance-Type Estimation of Long Memory - (Now published in Stochastic Processes and their Applications, 29 (1999), pp.1-24.)," STICERD - Econometrics Paper Series 363, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
  82. Sánchez de Naranjo, M. V., 1995. "A central limit theorem for non-linear functionals of stationary Gaussian vector processes," Statistics & Probability Letters, Elsevier, vol. 22(3), pages 223-230, February.
  83. Bardet, J.-M. & Tudor, C.A., 2010. "A wavelet analysis of the Rosenblatt process: Chaos expansion and estimation of the self-similarity parameter," Stochastic Processes and their Applications, Elsevier, vol. 120(12), pages 2331-2362, December.
  84. Tailen Hsing, 2000. "Linear Processes, Long-Range Dependence and Asymptotic Expansions," Statistical Inference for Stochastic Processes, Springer, vol. 3(1), pages 19-29, January.
  85. Nicolaescu, Liviu I., 2017. "A CLT concerning critical points of random functions on a Euclidean space," Stochastic Processes and their Applications, Elsevier, vol. 127(10), pages 3412-3446.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.