IDEAS home Printed from https://ideas.repec.org/p/aah/create/2016-33.html
   My bibliography  Save this paper

Estimation of the global regularity of a multifractional Brownian motion

Author

Listed:
  • Joachim Lebovits

    (University Paris 13)

  • Mark Podolskij

    (Aarhus University and CREATES)

Abstract

This paper presents a new estimator of the global regularity index of a multifractional Brownian motion. Our estimation method is based upon a ratio statistic, which compares the realized global quadratic variation of a multifractional Brownian motion at two different frequencies. We show that a logarithmic transformation of this statistic converges in probability to the minimum of the Hurst functional parameter, which is, under weak assumptions, identical to the global regularity index of the path.

Suggested Citation

  • Joachim Lebovits & Mark Podolskij, 2016. "Estimation of the global regularity of a multifractional Brownian motion," CREATES Research Papers 2016-33, Department of Economics and Business Economics, Aarhus University.
  • Handle: RePEc:aah:create:2016-33
    as

    Download full text from publisher

    File URL: https://repec.econ.au.dk/repec/creates/rp/16/rp16_33.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stoev, Stilian A. & Taqqu, Murad S., 2006. "How rich is the class of multifractional Brownian motions?," Stochastic Processes and their Applications, Elsevier, vol. 116(2), pages 200-221, February.
    2. Lebovits, Joachim & Lévy Véhel, Jacques & Herbin, Erick, 2014. "Stochastic integration with respect to multifractional Brownian motion via tangent fractional Brownian motions," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 678-708.
    3. Breuer, Péter & Major, Péter, 1983. "Central limit theorems for non-linear functionals of Gaussian fields," Journal of Multivariate Analysis, Elsevier, vol. 13(3), pages 425-441, September.
    4. Bardet, Jean-Marc & Surgailis, Donatas, 2013. "Nonparametric estimation of the local Hurst function of multifractional Gaussian processes," Stochastic Processes and their Applications, Elsevier, vol. 123(3), pages 1004-1045.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mazur, Stepan & Otryakhin, Dmitry & Podolskij, Mark, 2018. "Estimation of the linear fractional stable motion," Working Papers 2018:3, Örebro University, School of Business.
    2. Mathias Mørck Ljungdahl & Mark Podolskij, 2020. "A minimal contrast estimator for the linear fractional stable motion," Statistical Inference for Stochastic Processes, Springer, vol. 23(2), pages 381-413, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Loboda, Dennis & Mies, Fabian & Steland, Ansgar, 2021. "Regularity of multifractional moving average processes with random Hurst exponent," Stochastic Processes and their Applications, Elsevier, vol. 140(C), pages 21-48.
    2. Peng, Qidi & Zhao, Ran, 2018. "A general class of multifractional processes and stock price informativeness," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 248-267.
    3. Berzin-Joseph, Corinne & León, José R. & Ortega, Joaquín, 2001. "Non-linear functionals of the Brownian bridge and some applications," Stochastic Processes and their Applications, Elsevier, vol. 92(1), pages 11-30, March.
    4. Mikko S. Pakkanen & Anthony Réveillac, 2014. "Functional limit theorems for generalized variations of the fractional Brownian sheet," CREATES Research Papers 2014-14, Department of Economics and Business Economics, Aarhus University.
    5. Kerstin Gärtner & Mark Podolskij, 2014. "On non-standard limits of Brownian semi-stationary," CREATES Research Papers 2014-50, Department of Economics and Business Economics, Aarhus University.
    6. Nourdin, Ivan & Peccati, Giovanni & Podolskij, Mark, 2011. "Quantitative Breuer-Major theorems," Stochastic Processes and their Applications, Elsevier, vol. 121(4), pages 793-812, April.
    7. Akinlar, M.A. & Inc, Mustafa & Gómez-Aguilar, J.F. & Boutarfa, B., 2020. "Solutions of a disease model with fractional white noise," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    8. Bai, Shuyang & Taqqu, Murad S., 2016. "Short-range dependent processes subordinated to the Gaussian may not be strong mixing," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 198-200.
    9. Giraitis, Liudas & Robinson, Peter M., 1998. "Variance-type estimation of long memory," LSE Research Online Documents on Economics 2327, London School of Economics and Political Science, LSE Library.
    10. Ehsan Azmoodeh & Yuliya Mishura & Farzad Sabzikar, 2022. "How Does Tempering Affect the Local and Global Properties of Fractional Brownian Motion?," Journal of Theoretical Probability, Springer, vol. 35(1), pages 484-527, March.
    11. Cohen, Serge & Lacaux, Céline & Ledoux, Michel, 2008. "A general framework for simulation of fractional fields," Stochastic Processes and their Applications, Elsevier, vol. 118(9), pages 1489-1517, September.
    12. Gärtner, Kerstin & Podolskij, Mark, 2015. "On non-standard limits of Brownian semi-stationary processes," Stochastic Processes and their Applications, Elsevier, vol. 125(2), pages 653-677.
    13. Mikkel Bennedsen, 2016. "Semiparametric inference on the fractal index of Gaussian and conditionally Gaussian time series data," Papers 1608.01895, arXiv.org, revised Mar 2018.
    14. Debashis Mondal & Donald Percival, 2010. "Wavelet variance analysis for gappy time series," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(5), pages 943-966, October.
    15. Surgailis, Donatas & Teyssière, Gilles & Vaiciulis, Marijus, 2008. "The increment ratio statistic," Journal of Multivariate Analysis, Elsevier, vol. 99(3), pages 510-541, March.
    16. Bai, Shuyang & Taqqu, Murad S., 2019. "Sensitivity of the Hermite rank," Stochastic Processes and their Applications, Elsevier, vol. 129(3), pages 822-840.
    17. Coeurjolly, Jean-François & Porcu, Emilio, 2017. "Properties and Hurst exponent estimation of the circularly-symmetric fractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 128(C), pages 21-27.
    18. Bai, Shuyang & Taqqu, Murad S. & Zhang, Ting, 2016. "A unified approach to self-normalized block sampling," Stochastic Processes and their Applications, Elsevier, vol. 126(8), pages 2465-2493.
    19. Bibinger, Markus, 2020. "Cusum tests for changes in the Hurst exponent and volatility of fractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 161(C).
    20. Malte Knüppel, 2015. "Evaluating the Calibration of Multi-Step-Ahead Density Forecasts Using Raw Moments," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(2), pages 270-281, April.

    More about this item

    Keywords

    consistency; Hurst parameter; multifractional Brownian motion; power variation;
    All these keywords.

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aah:create:2016-33. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.econ.au.dk/afn/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.