IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v22y2020i2d10.1007_s11009-019-09720-w.html
   My bibliography  Save this article

Reduction Principle for Functionals of Vector Random Fields

Author

Listed:
  • Andriy Olenko

    (La Trobe University)

  • Dareen Omari

    (La Trobe University)

Abstract

We prove a version of the reduction principle for functionals of vector long-range dependent random fields. The components of the fields may have different long-range dependent behaviours. The results are illustrated by an application to the first Minkowski functional of the Fisher–Snedecor random fields. Simulation studies confirm the obtained theoretical results and suggest some new problems.

Suggested Citation

  • Andriy Olenko & Dareen Omari, 2020. "Reduction Principle for Functionals of Vector Random Fields," Methodology and Computing in Applied Probability, Springer, vol. 22(2), pages 573-598, June.
  • Handle: RePEc:spr:metcap:v:22:y:2020:i:2:d:10.1007_s11009-019-09720-w
    DOI: 10.1007/s11009-019-09720-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-019-09720-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-019-09720-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stamatovic, Biljana & Stamatovic, Sinisa, 2010. "Cox limit theorem for large excursions of a norm of a Gaussian vector process," Statistics & Probability Letters, Elsevier, vol. 80(19-20), pages 1479-1485, October.
    2. Evgeny Spodarev, 2014. "Limit Theorems for Excursion Sets of Stationary Random Fields," Springer Optimization and Its Applications, in: Volodymyr Korolyuk & Nikolaos Limnios & Yuliya Mishura & Lyudmyla Sakhno & Georgiy Shevchenko (ed.), Modern Stochastics and Applications, edition 127, pages 221-241, Springer.
    3. Breuer, Péter & Major, Péter, 1983. "Central limit theorems for non-linear functionals of Gaussian fields," Journal of Multivariate Analysis, Elsevier, vol. 13(3), pages 425-441, September.
    4. Stilian A. Stoev & Murad S. Taqqu, 2007. "Limit Theorems for Sums of Heavy-tailed Variables with Random Dependent Weights," Methodology and Computing in Applied Probability, Springer, vol. 9(1), pages 55-87, March.
    5. Nikolai Leonenko & Andriy Olenko, 2013. "Tauberian and Abelian Theorems for Long-range Dependent Random Fields," Methodology and Computing in Applied Probability, Springer, vol. 15(4), pages 715-742, December.
    6. Sánchez de Naranjo, M. V., 1995. "A central limit theorem for non-linear functionals of stationary Gaussian vector processes," Statistics & Probability Letters, Elsevier, vol. 22(3), pages 223-230, February.
    7. Hariz, Samir Ben, 2002. "Limit Theorems for the Non-linear Functional of Stationary Gaussian Processes," Journal of Multivariate Analysis, Elsevier, vol. 80(2), pages 191-216, February.
    8. Liu, Peng & Ji, Lanpeng, 2017. "Extremes of locally stationary chi-square processes with trend," Stochastic Processes and their Applications, Elsevier, vol. 127(2), pages 497-525.
    9. Shuyang Bai & Murad S. Taqqu, 2013. "Multivariate Limit Theorems In The Context Of Long-Range Dependence," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(6), pages 717-743, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Johann Gehringer & Xue-Mei Li, 2022. "Functional Limit Theorems for the Fractional Ornstein–Uhlenbeck Process," Journal of Theoretical Probability, Springer, vol. 35(1), pages 426-456, March.
    2. Bai, Shuyang & Taqqu, Murad S., 2019. "Sensitivity of the Hermite rank," Stochastic Processes and their Applications, Elsevier, vol. 129(3), pages 822-840.
    3. Pauliina Ilmonen & Soledad Torres & Lauri Viitasaari, 2020. "Oscillating Gaussian processes," Statistical Inference for Stochastic Processes, Springer, vol. 23(3), pages 571-593, October.
    4. Kerstin Gärtner & Mark Podolskij, 2014. "On non-standard limits of Brownian semi-stationary," CREATES Research Papers 2014-50, Department of Economics and Business Economics, Aarhus University.
    5. Surgailis, Donatas & Teyssière, Gilles & Vaiciulis, Marijus, 2008. "The increment ratio statistic," Journal of Multivariate Analysis, Elsevier, vol. 99(3), pages 510-541, March.
    6. Bai, Shuyang & Taqqu, Murad S. & Zhang, Ting, 2016. "A unified approach to self-normalized block sampling," Stochastic Processes and their Applications, Elsevier, vol. 126(8), pages 2465-2493.
    7. Shuyang Bai & Murad S. Taqqu, 2013. "Multivariate Limit Theorems In The Context Of Long-Range Dependence," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(6), pages 717-743, November.
    8. Zhao, Zhibiao & Wu, Wei Biao, 2007. "Asymptotic theory for curve-crossing analysis," Stochastic Processes and their Applications, Elsevier, vol. 117(7), pages 862-877, July.
    9. Rosa Espejo & Nikolai Leonenko & Andriy Olenko & María Ruiz-Medina, 2015. "On a class of minimum contrast estimators for Gegenbauer random fields," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(4), pages 657-680, December.
    10. Miguel A. Arcones, 1999. "The Law of the Iterated Logarithm over a Stationary Gaussian Sequence of Random Vectors," Journal of Theoretical Probability, Springer, vol. 12(3), pages 615-641, July.
    11. Yu Zhang, 2023. "Asymptotic Normality of M-Estimator in Linear Regression Model with Asymptotically Almost Negatively Associated Errors," Mathematics, MDPI, vol. 11(18), pages 1-16, September.
    12. Nourdin, Ivan & Nualart, David & Peccati, Giovanni, 2021. "The Breuer–Major theorem in total variation: Improved rates under minimal regularity," Stochastic Processes and their Applications, Elsevier, vol. 131(C), pages 1-20.
    13. Jun Yuan & Haowei Wang & Szu Hui Ng & Victor Nian, 2020. "Ship Emission Mitigation Strategies Choice Under Uncertainty," Energies, MDPI, vol. 13(9), pages 1-20, May.
    14. Nualart, D. & Ortiz-Latorre, S., 2008. "Central limit theorems for multiple stochastic integrals and Malliavin calculus," Stochastic Processes and their Applications, Elsevier, vol. 118(4), pages 614-628, April.
    15. Berzin-Joseph, Corinne & León, José R. & Ortega, Joaquín, 2001. "Non-linear functionals of the Brownian bridge and some applications," Stochastic Processes and their Applications, Elsevier, vol. 92(1), pages 11-30, March.
    16. Mikko S. Pakkanen & Anthony Réveillac, 2014. "Functional limit theorems for generalized variations of the fractional Brownian sheet," CREATES Research Papers 2014-14, Department of Economics and Business Economics, Aarhus University.
    17. Nourdin, Ivan & Peccati, Giovanni & Podolskij, Mark, 2011. "Quantitative Breuer-Major theorems," Stochastic Processes and their Applications, Elsevier, vol. 121(4), pages 793-812, April.
    18. Ivan Nourdin & Murad S. Taqqu, 2014. "Central and Non-central Limit Theorems in a Free Probability Setting," Journal of Theoretical Probability, Springer, vol. 27(1), pages 220-248, March.
    19. Doukhan, P. & Pommeret, D. & Reboul, L., 2015. "Data driven smooth test of comparison for dependent sequences," Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 147-165.
    20. Sibbertsen, Philipp, 2000. "Robust CUSUM-M test in the presence of long-memory disturbances," Technical Reports 2000,19, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:22:y:2020:i:2:d:10.1007_s11009-019-09720-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.