IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v131y2014icp1-16.html
   My bibliography  Save this article

Asymptotic behavior of the Whittle estimator for the increments of a Rosenblatt process

Author

Listed:
  • Bardet, Jean-Marc
  • Tudor, Ciprian

Abstract

The purpose of this paper is the estimation of the self-similarity index of the Rosenblatt process by using the Whittle estimator. Via chaos expansion into multiple stochastic integrals, we establish a non-central limit theorem satisfied by this estimator. We illustrate our results by numerical simulations.

Suggested Citation

  • Bardet, Jean-Marc & Tudor, Ciprian, 2014. "Asymptotic behavior of the Whittle estimator for the increments of a Rosenblatt process," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 1-16.
  • Handle: RePEc:eee:jmvana:v:131:y:2014:i:c:p:1-16
    DOI: 10.1016/j.jmva.2014.06.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X14001420
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2014.06.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pipiras, Vladas & Taqqu, Murad S., 2010. "Regularization and integral representations of Hermite processes," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 2014-2023, December.
    2. Breuer, Péter & Major, Péter, 1983. "Central limit theorems for non-linear functionals of Gaussian fields," Journal of Multivariate Analysis, Elsevier, vol. 13(3), pages 425-441, September.
    3. Abadir, Karim M. & Distaso, Walter & Giraitis, Liudas, 2007. "Nonstationarity-extended local Whittle estimation," Journal of Econometrics, Elsevier, vol. 141(2), pages 1353-1384, December.
    4. Bardet, J.-M. & Tudor, C.A., 2010. "A wavelet analysis of the Rosenblatt process: Chaos expansion and estimation of the self-similarity parameter," Stochastic Processes and their Applications, Elsevier, vol. 120(12), pages 2331-2362, December.
    5. Fox, Robert & Taqqu, Murad S., 1987. "Multiple stochastic integrals with dependent integrators," Journal of Multivariate Analysis, Elsevier, vol. 21(1), pages 105-127, February.
    6. Taqqu, Murad S., 1978. "A representation for self-similar processes," Stochastic Processes and their Applications, Elsevier, vol. 7(1), pages 55-64, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abry, Patrice & Didier, Gustavo, 2018. "Wavelet eigenvalue regression for n-variate operator fractional Brownian motion," Journal of Multivariate Analysis, Elsevier, vol. 168(C), pages 75-104.
    2. Gilles de Truchis & Elena Ivona Dumitrescu, 2019. "Narrow-band Weighted Nonlinear Least Squares Estimation of Unbalanced Cointegration Systems," Working Papers hal-04141871, HAL.
    3. Gilles de Truchis & Elena Ivona Dumitrescu, 2019. "Narrow-band Weighted Nonlinear Least Squares Estimation of Unbalanced Cointegration Systems," EconomiX Working Papers 2019-14, University of Paris Nanterre, EconomiX.
    4. Jean-Marc Bardet & Yves Gael Tchabo MBienkeu, 2024. "Quasi-maximum likelihood estimation of long-memory linear processes," Statistical Inference for Stochastic Processes, Springer, vol. 27(3), pages 457-483, October.
    5. Patrice Abry & Gustavo Didier & Hui Li, 2019. "Two-step wavelet-based estimation for Gaussian mixed fractional processes," Statistical Inference for Stochastic Processes, Springer, vol. 22(2), pages 157-185, July.
    6. Gilles de Truchis & Florent Dubois & Elena Ivona Dumitrescu, 2019. "Local Whittle Analysis of Stationary Unbalanced Fractional Cointegration Systems," Working Papers hal-04141882, HAL.
    7. Gilles de Truchis & Elena Ivona Dumitrescu & Florent Dubois, 2019. "Local Whittle Analysis of Stationary Unbalanced Fractional Cointegration Systems," EconomiX Working Papers 2019-15, University of Paris Nanterre, EconomiX.
    8. Čoupek, Petr & Duncan, Tyrone E. & Pasik-Duncan, Bozenna, 2022. "A stochastic calculus for Rosenblatt processes," Stochastic Processes and their Applications, Elsevier, vol. 150(C), pages 853-885.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bardet, J.-M. & Tudor, C.A., 2010. "A wavelet analysis of the Rosenblatt process: Chaos expansion and estimation of the self-similarity parameter," Stochastic Processes and their Applications, Elsevier, vol. 120(12), pages 2331-2362, December.
    2. Shuyang Bai & Murad S. Taqqu, 2013. "Multivariate Limit Theorems In The Context Of Long-Range Dependence," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(6), pages 717-743, November.
    3. Anh, V. V. & Leonenko, N. N., 1999. "Non-Gaussian scenarios for the heat equation with singular initial conditions," Stochastic Processes and their Applications, Elsevier, vol. 84(1), pages 91-114, November.
    4. Bai, Shuyang & Taqqu, Murad S., 2014. "Generalized Hermite processes, discrete chaos and limit theorems," Stochastic Processes and their Applications, Elsevier, vol. 124(4), pages 1710-1739.
    5. Obayda Assaad & Ciprian A. Tudor, 2020. "Parameter identification for the Hermite Ornstein–Uhlenbeck process," Statistical Inference for Stochastic Processes, Springer, vol. 23(2), pages 251-270, July.
    6. Patrice Abry & Gustavo Didier & Hui Li, 2019. "Two-step wavelet-based estimation for Gaussian mixed fractional processes," Statistical Inference for Stochastic Processes, Springer, vol. 22(2), pages 157-185, July.
    7. Nikolai Leonenko & Ludmila Sakhno, 2001. "On the Kaplan–Meier Estimator of Long-Range Dependent Sequences," Statistical Inference for Stochastic Processes, Springer, vol. 4(1), pages 17-40, January.
    8. Stengos, Thanasis & Yazgan, M. Ege, 2014. "Persistence In Convergence," Macroeconomic Dynamics, Cambridge University Press, vol. 18(4), pages 753-782, June.
    9. Kerstin Gärtner & Mark Podolskij, 2014. "On non-standard limits of Brownian semi-stationary," CREATES Research Papers 2014-50, Department of Economics and Business Economics, Aarhus University.
    10. Nourdin, Ivan & Peccati, Giovanni & Podolskij, Mark, 2011. "Quantitative Breuer-Major theorems," Stochastic Processes and their Applications, Elsevier, vol. 121(4), pages 793-812, April.
    11. Zhong, Meirui & Zhang, Rui & Ren, Xiaohang, 2023. "The time-varying effects of liquidity and market efficiency of the European Union carbon market: Evidence from the TVP-SVAR-SV approach," Energy Economics, Elsevier, vol. 123(C).
    12. Baillie, Richard T. & Kapetanios, George & Papailias, Fotis, 2014. "Bandwidth selection by cross-validation for forecasting long memory financial time series," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 129-143.
    13. Guglielmo Maria Caporale & Luis A. Gil-Alana & Alex Plastun, 2017. "Long Memory and Data Frequency in Financial Markets," CESifo Working Paper Series 6396, CESifo.
    14. Richard T. Baillie & Fabio Calonaci & Dooyeon Cho & Seunghwa Rho, 2019. "Long Memory, Realized Volatility and HAR Models," Working Papers 881, Queen Mary University of London, School of Economics and Finance.
    15. Debashis Mondal & Donald Percival, 2010. "Wavelet variance analysis for gappy time series," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(5), pages 943-966, October.
    16. Caporale, Guglielmo Maria & Gil-Alana, Luis & Plastun, Alex, 2018. "Is market fear persistent? A long-memory analysis," Finance Research Letters, Elsevier, vol. 27(C), pages 140-147.
    17. Chang Sik Kim & Peter C.B. Phillips, 2006. "Log Periodogram Regression: The Nonstationary Case," Cowles Foundation Discussion Papers 1587, Cowles Foundation for Research in Economics, Yale University.
    18. Surgailis, Donatas & Teyssière, Gilles & Vaiciulis, Marijus, 2008. "The increment ratio statistic," Journal of Multivariate Analysis, Elsevier, vol. 99(3), pages 510-541, March.
    19. Bai, Shuyang & Taqqu, Murad S., 2019. "Sensitivity of the Hermite rank," Stochastic Processes and their Applications, Elsevier, vol. 129(3), pages 822-840.
    20. Dominique Guegan & Zhiping Lu & Beijia Zhu, 2012. "Comparaison of Several Estimation Procedures for Long Term Behavior," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00673934, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:131:y:2014:i:c:p:1-16. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.