IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v128y2017icp21-27.html
   My bibliography  Save this article

Properties and Hurst exponent estimation of the circularly-symmetric fractional Brownian motion

Author

Listed:
  • Coeurjolly, Jean-François
  • Porcu, Emilio

Abstract

This paper extends the fractional Brownian motion to the complex-valued case. The model is defined as the centered, zero at zero, self-similar complex-valued stochastic process with stationary increments. We present a few properties of this new model and propose an estimation of its main index, the Hurst exponent characterizing the self-similarity property.

Suggested Citation

  • Coeurjolly, Jean-François & Porcu, Emilio, 2017. "Properties and Hurst exponent estimation of the circularly-symmetric fractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 128(C), pages 21-27.
  • Handle: RePEc:eee:stapro:v:128:y:2017:i:c:p:21-27
    DOI: 10.1016/j.spl.2017.04.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715217301360
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2017.04.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Breuer, Péter & Major, Péter, 1983. "Central limit theorems for non-linear functionals of Gaussian fields," Journal of Multivariate Analysis, Elsevier, vol. 13(3), pages 425-441, September.
    2. Jean-François Coeurjolly, 2001. "Estimating the Parameters of a Fractional Brownian Motion by Discrete Variations of its Sample Paths," Statistical Inference for Stochastic Processes, Springer, vol. 4(2), pages 199-227, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bégyn, Arnaud, 2007. "Functional limit theorems for generalized quadratic variations of Gaussian processes," Stochastic Processes and their Applications, Elsevier, vol. 117(12), pages 1848-1869, December.
    2. Mikkel Bennedsen, 2016. "Semiparametric inference on the fractal index of Gaussian and conditionally Gaussian time series data," CREATES Research Papers 2016-21, Department of Economics and Business Economics, Aarhus University.
    3. Bibinger, Markus, 2020. "Cusum tests for changes in the Hurst exponent and volatility of fractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 161(C).
    4. Abry, Patrice & Didier, Gustavo, 2018. "Wavelet eigenvalue regression for n-variate operator fractional Brownian motion," Journal of Multivariate Analysis, Elsevier, vol. 168(C), pages 75-104.
    5. Patrice Abry & Gustavo Didier & Hui Li, 2019. "Two-step wavelet-based estimation for Gaussian mixed fractional processes," Statistical Inference for Stochastic Processes, Springer, vol. 22(2), pages 157-185, July.
    6. Marco Dozzi & Yuliya Mishura & Georgiy Shevchenko, 2015. "Asymptotic behavior of mixed power variations and statistical estimation in mixed models," Statistical Inference for Stochastic Processes, Springer, vol. 18(2), pages 151-175, July.
    7. Jan Gairing & Peter Imkeller & Radomyra Shevchenko & Ciprian Tudor, 2020. "Hurst Index Estimation in Stochastic Differential Equations Driven by Fractional Brownian Motion," Journal of Theoretical Probability, Springer, vol. 33(3), pages 1691-1714, September.
    8. Kim, Yoon Tae & Park, Hyun Suk, 2015. "Convergence rate of CLT for the estimation of Hurst parameter of fractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 105(C), pages 181-188.
    9. Mikkel Bennedsen, 2016. "Semiparametric inference on the fractal index of Gaussian and conditionally Gaussian time series data," Papers 1608.01895, arXiv.org, revised Mar 2018.
    10. Andreas Basse-O'Connor & Raphaël Lachièze-Rey & Mark Podolskij, 2015. "Limit theorems for stationary increments Lévy driven moving averages," CREATES Research Papers 2015-56, Department of Economics and Business Economics, Aarhus University.
    11. Kerstin Gärtner & Mark Podolskij, 2014. "On non-standard limits of Brownian semi-stationary," CREATES Research Papers 2014-50, Department of Economics and Business Economics, Aarhus University.
    12. Surgailis, Donatas & Teyssière, Gilles & Vaiciulis, Marijus, 2008. "The increment ratio statistic," Journal of Multivariate Analysis, Elsevier, vol. 99(3), pages 510-541, March.
    13. Andreas Basse-O'Connor & Mark Podolskij, 2015. "On critical cases in limit theory for stationary increments Lévy driven moving averages," CREATES Research Papers 2015-57, Department of Economics and Business Economics, Aarhus University.
    14. Bai, Shuyang & Taqqu, Murad S. & Zhang, Ting, 2016. "A unified approach to self-normalized block sampling," Stochastic Processes and their Applications, Elsevier, vol. 126(8), pages 2465-2493.
    15. Shuyang Bai & Murad S. Taqqu, 2013. "Multivariate Limit Theorems In The Context Of Long-Range Dependence," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(6), pages 717-743, November.
    16. Miguel A. Arcones, 1999. "The Law of the Iterated Logarithm over a Stationary Gaussian Sequence of Random Vectors," Journal of Theoretical Probability, Springer, vol. 12(3), pages 615-641, July.
    17. Jean-Christophe Breton & Jean-François Coeurjolly, 2012. "Confidence intervals for the Hurst parameter of a fractional Brownian motion based on finite sample size," Statistical Inference for Stochastic Processes, Springer, vol. 15(1), pages 1-26, April.
    18. Bondarenko, Valeria & Bondarenko, Victor & Truskovskyi, Kyryl, 2017. "Forecasting of time data with using fractional Brownian motion," Chaos, Solitons & Fractals, Elsevier, vol. 97(C), pages 44-50.
    19. Nourdin, Ivan & Nualart, David & Peccati, Giovanni, 2021. "The Breuer–Major theorem in total variation: Improved rates under minimal regularity," Stochastic Processes and their Applications, Elsevier, vol. 131(C), pages 1-20.
    20. Jun Yuan & Haowei Wang & Szu Hui Ng & Victor Nian, 2020. "Ship Emission Mitigation Strategies Choice Under Uncertainty," Energies, MDPI, vol. 13(9), pages 1-20, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:128:y:2017:i:c:p:21-27. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.