IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v35y2022i3d10.1007_s10959-021-01112-6.html
   My bibliography  Save this article

Multivariate Normal Approximation on the Wiener Space: New Bounds in the Convex Distance

Author

Listed:
  • Ivan Nourdin

    (University of Luxembourg)

  • Giovanni Peccati

    (University of Luxembourg)

  • Xiaochuan Yang

    (University of Bath)

Abstract

We establish explicit bounds on the convex distance between the distribution of a vector of smooth functionals of a Gaussian field and that of a normal vector with a positive-definite covariance matrix. Our bounds are commensurate to the ones obtained by Nourdin et al. (Ann Inst Henri Poincaré Probab Stat 46(1):45–58, 2010) for the (smoother) 1-Wasserstein distance, and do not involve any additional logarithmic factor. One of the main tools exploited in our work is a recursive estimate on the convex distance recently obtained by Schulte and Yukich (Electron J Probab 24(130):1–42, 2019). We illustrate our abstract results in two different situations: (i) we prove a quantitative multivariate fourth moment theorem for vectors of multiple Wiener–Itô integrals, and (ii) we characterize the rate of convergence for the finite-dimensional distributions in the functional Breuer–Major theorem.

Suggested Citation

  • Ivan Nourdin & Giovanni Peccati & Xiaochuan Yang, 2022. "Multivariate Normal Approximation on the Wiener Space: New Bounds in the Convex Distance," Journal of Theoretical Probability, Springer, vol. 35(3), pages 2020-2037, September.
  • Handle: RePEc:spr:jotpro:v:35:y:2022:i:3:d:10.1007_s10959-021-01112-6
    DOI: 10.1007/s10959-021-01112-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-021-01112-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-021-01112-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. de Jong, Peter, 1990. "A central limit theorem for generalized multilinear forms," Journal of Multivariate Analysis, Elsevier, vol. 34(2), pages 275-289, August.
    2. Breuer, Péter & Major, Péter, 1983. "Central limit theorems for non-linear functionals of Gaussian fields," Journal of Multivariate Analysis, Elsevier, vol. 13(3), pages 425-441, September.
    3. Nualart,David & Nualart,Eulalia, 2018. "Introduction to Malliavin Calculus," Cambridge Books, Cambridge University Press, number 9781107039124, September.
    4. Nualart,David & Nualart,Eulalia, 2018. "Introduction to Malliavin Calculus," Cambridge Books, Cambridge University Press, number 9781107611986, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nourdin, Ivan & Nualart, David & Peccati, Giovanni, 2021. "The Breuer–Major theorem in total variation: Improved rates under minimal regularity," Stochastic Processes and their Applications, Elsevier, vol. 131(C), pages 1-20.
    2. Ehsan Azmoodeh & Yuliya Mishura & Farzad Sabzikar, 2022. "How Does Tempering Affect the Local and Global Properties of Fractional Brownian Motion?," Journal of Theoretical Probability, Springer, vol. 35(1), pages 484-527, March.
    3. Hiroaki Hata & Nien-Lin Liu & Kazuhiro Yasuda, 2022. "Expressions of forward starting option price in Hull–White stochastic volatility model," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 45(1), pages 101-135, June.
    4. Ji Huang, 2023. "A Probabilistic Solution to High-Dimensional Continuous-Time Macro and Finance Models," CESifo Working Paper Series 10600, CESifo.
    5. Nourdin, Ivan & Pu, Fei, 2022. "Gaussian fluctuation for Gaussian Wishart matrices of overall correlation," Statistics & Probability Letters, Elsevier, vol. 181(C).
    6. Mauricio Elizalde & Carlos Escudero & Tomoyuki Ichiba, 2022. "Optimal investment with insider information using Skorokhod & Russo-Vallois integration," Papers 2211.07471, arXiv.org, revised Dec 2024.
    7. Elisa Al`os & Eulalia Nualart & Makar Pravosud, 2023. "On the implied volatility of Inverse options under stochastic volatility models," Papers 2401.00539, arXiv.org, revised Sep 2024.
    8. Ruzong Fan & Hong-Bin Fang, 2022. "Stochastic functional linear models and Malliavin calculus," Computational Statistics, Springer, vol. 37(2), pages 591-611, April.
    9. Masahiro Handa & Noriyoshi Sakuma & Ryoichi Suzuki, 2024. "A Girsanov transformed Clark-Ocone-Haussmann type formula for $$L^1$$ L 1 -pure jump additive processes and its application to portfolio optimization," Annals of Finance, Springer, vol. 20(3), pages 329-352, September.
    10. Hyungbin Park, 2021. "Influence of risk tolerance on long-term investments: A Malliavin calculus approach," Papers 2104.00911, arXiv.org.
    11. Fenge Chen & Bing Li & Xingchun Peng, 2022. "Portfolio Selection and Risk Control for an Insurer With Uncertain Time Horizon and Partial Information in an Anticipating Environment," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 635-659, June.
    12. Elisa Al`os & Eulalia Nualart & Makar Pravosud, 2022. "On the implied volatility of Asian options under stochastic volatility models," Papers 2208.01353, arXiv.org, revised Mar 2024.
    13. Elisa Al`os & Eulalia Nualart & Makar Pravosud, 2023. "On the implied volatility of European and Asian call options under the stochastic volatility Bachelier model," Papers 2308.15341, arXiv.org, revised Sep 2024.
    14. Chen, Xingzhi & Xu, Xin & Tian, Baodan & Li, Dong & Yang, Dan, 2022. "Dynamics of a stochastic delayed chemostat model with nutrient storage and Lévy jumps," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    15. Azmoodeh, Ehsan & Ljungdahl, Mathias Mørck & Thäle, Christoph, 2022. "Multi-dimensional normal approximation of heavy-tailed moving averages," Stochastic Processes and their Applications, Elsevier, vol. 145(C), pages 308-334.
    16. Kohatsu-Higa, Arturo & Nualart, Eulalia & Tran, Ngoc Khue, 2022. "Density estimates for jump diffusion processes," Applied Mathematics and Computation, Elsevier, vol. 420(C).
    17. Ernst, Philip A. & Huang, Dongzhou & Viens, Frederi G., 2023. "Yule’s “nonsense correlation” for Gaussian random walks," Stochastic Processes and their Applications, Elsevier, vol. 162(C), pages 423-455.
    18. Jie Xiong & Zuo quan Xu & Jiayu Zheng, 2019. "Mean-variance portfolio selection under partial information with drift uncertainty," Papers 1901.03030, arXiv.org, revised Oct 2020.
    19. Levental, S. & Vellaisamy, P., 2023. "Formulas for the divergence operator in isonormal Gaussian space," Statistics & Probability Letters, Elsevier, vol. 194(C).
    20. Ayub Ahmadi & Mahdieh Tahmasebi, 2024. "Pricing and delta computation in jump-diffusion models with stochastic intensity by Malliavin calculus," Papers 2405.00473, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:35:y:2022:i:3:d:10.1007_s10959-021-01112-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.