IDEAS home Printed from https://ideas.repec.org/p/aah/create/2015-56.html
   My bibliography  Save this paper

Limit theorems for stationary increments Lévy driven moving averages

Author

Listed:
  • Andreas Basse-O'Connor

    (Department of Mathematics)

  • Raphaël Lachièze-Rey

    (Heidelberg University - Department of Mathematics)

  • Mark Podolskij

    (Department of Mathematics and CREATES)

Abstract

In this paper we present some new limit theorems for power variation of k-th order increments of stationary increments Lévy driven moving averages. In this infill sampling setting, the asymptotic theory gives very surprising results, which (partially) have no counterpart in the theory of discrete moving averages. More specifically, we will show that the first order limit theorems and the mode of convergence strongly depend on the interplay between the given order of the increments, the considered power p, the Blumenthal-Getoor index of the driving pure jump Lévy process L and the behaviour of the kernel function g at 0. First order asymptotic theory essentially comprise three cases: stable convergence towards a certain infinitely divisible distribution, an ergodic type limit theorem and convergence in probability towards an integrated random process. We also prove the second order limit theorem connected to the ergodic type result. When the driving Lévy process L is a symmetric stable process we obtain two different limits: a central limit theorem and convergence in distribution towards a stable random variable.

Suggested Citation

  • Andreas Basse-O'Connor & Raphaël Lachièze-Rey & Mark Podolskij, 2015. "Limit theorems for stationary increments Lévy driven moving averages," CREATES Research Papers 2015-56, Department of Economics and Business Economics, Aarhus University.
  • Handle: RePEc:aah:create:2015-56
    as

    Download full text from publisher

    File URL: https://repec.econ.au.dk/repec/creates/rp/15/rp15_56.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jacod, Jean, 2008. "Asymptotic properties of realized power variations and related functionals of semimartingales," Stochastic Processes and their Applications, Elsevier, vol. 118(4), pages 517-559, April.
    2. Cambanis, Stamatis & Hardin, Clyde D. & Weron, Aleksander, 1987. "Ergodic properties of stationary stable processes," Stochastic Processes and their Applications, Elsevier, vol. 24(1), pages 1-18, February.
    3. Mark Podolskij & Mathias Vetter, 2010. "Understanding limit theorems for semimartingales: a short survey," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 64(3), pages 329-351, August.
    4. Jean-François Coeurjolly, 2001. "Estimating the Parameters of a Fractional Brownian Motion by Discrete Variations of its Sample Paths," Statistical Inference for Stochastic Processes, Springer, vol. 4(2), pages 199-227, May.
    5. Breuer, Péter & Major, Péter, 1983. "Central limit theorems for non-linear functionals of Gaussian fields," Journal of Multivariate Analysis, Elsevier, vol. 13(3), pages 425-441, September.
    6. Mark Podolskij & Mathias Vetter, 2010. "Understanding limit theorems for semimartingales: a short survey," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 64(s1), pages 329-351.
    7. Koul, Hira L. & Surgailis, Donatas, 2001. "Asymptotics of empirical processes of long memory moving averages with infinite variance," Stochastic Processes and their Applications, Elsevier, vol. 91(2), pages 309-336, February.
    8. Barndorff-Nielsen, Ole E. & Corcuera, José Manuel & Podolskij, Mark, 2009. "Power variation for Gaussian processes with stationary increments," Stochastic Processes and their Applications, Elsevier, vol. 119(6), pages 1845-1865, June.
    9. Ole E. Barndorff-Nielsen & Fred Espen Benth & Almut E. D. Veraart, 2013. "Modelling energy spot prices by volatility modulated L\'{e}vy-driven Volterra processes," Papers 1307.6332, arXiv.org.
    10. Braverman, Michael & Samorodnitsky, Gennady, 1998. "Symmetric infinitely divisible processes with sample paths in Orlicz spaces and absolute continuity of infinitely divisible processes," Stochastic Processes and their Applications, Elsevier, vol. 78(1), pages 1-26, October.
    11. Surgailis, Donatas, 0. "Stable limits of empirical processes of moving averages with infinite variance," Stochastic Processes and their Applications, Elsevier, vol. 100(1-2), pages 255-274, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mark Podolskij & Nopporn Thamrongrat, 2015. "A weak limit theorem for numerical approximation of Brownian semi-stationary processes," CREATES Research Papers 2015-53, Department of Economics and Business Economics, Aarhus University.
    2. Pakkanen, Mikko S. & Sottinen, Tommi & Yazigi, Adil, 2017. "On the conditional small ball property of multivariate Lévy-driven moving average processes," Stochastic Processes and their Applications, Elsevier, vol. 127(3), pages 749-782.
    3. Andreas Basse-O'Connor & Mark Podolskij, 2015. "On critical cases in limit theory for stationary increments Lévy driven moving averages," CREATES Research Papers 2015-57, Department of Economics and Business Economics, Aarhus University.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andreas Basse-O'Connor & Mark Podolskij, 2015. "On critical cases in limit theory for stationary increments Lévy driven moving averages," CREATES Research Papers 2015-57, Department of Economics and Business Economics, Aarhus University.
    2. Corcuera, José Manuel & Hedevang, Emil & Pakkanen, Mikko S. & Podolskij, Mark, 2013. "Asymptotic theory for Brownian semi-stationary processes with application to turbulence," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2552-2574.
    3. Mark Podolskij, 2014. "Ambit fields: survey and new challenges," CREATES Research Papers 2014-51, Department of Economics and Business Economics, Aarhus University.
    4. Mikkel Bennedsen, 2016. "Semiparametric inference on the fractal index of Gaussian and conditionally Gaussian time series data," Papers 1608.01895, arXiv.org, revised Mar 2018.
    5. Mikkel Bennedsen, 2016. "Semiparametric inference on the fractal index of Gaussian and conditionally Gaussian time series data," CREATES Research Papers 2016-21, Department of Economics and Business Economics, Aarhus University.
    6. Mark Podolskij & Christian Schmidt & Mathias Vetter, 2015. "On U- and V-statistics for discontinuous Itô semimartingale," CREATES Research Papers 2015-52, Department of Economics and Business Economics, Aarhus University.
    7. Kerstin Gärtner & Mark Podolskij, 2014. "On non-standard limits of Brownian semi-stationary," CREATES Research Papers 2014-50, Department of Economics and Business Economics, Aarhus University.
    8. Hounyo, Ulrich, 2017. "Bootstrapping integrated covariance matrix estimators in noisy jump–diffusion models with non-synchronous trading," Journal of Econometrics, Elsevier, vol. 197(1), pages 130-152.
    9. Markus Bibinger & Mathias Vetter, 2015. "Estimating the quadratic covariation of an asynchronously observed semimartingale with jumps," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(4), pages 707-743, August.
    10. Aleksey Kolokolov & Giulia Livieri & Davide Pirino, 2022. "Testing for Endogeneity of Irregular Sampling Schemes," CEIS Research Paper 547, Tor Vergata University, CEIS, revised 19 Dec 2022.
    11. Neil Shephard & Kevin Sheppard, 2012. "Efficient and feasible inference for the components of financial variation using blocked multipower variation," Economics Series Working Papers 593, University of Oxford, Department of Economics.
    12. Mikkel Bennedsen & Ulrich Hounyo & Asger Lunde & Mikko S. Pakkanen, 2016. "The Local Fractional Bootstrap," Papers 1605.00868, arXiv.org, revised Oct 2017.
    13. Kolokolov, Aleksey & Livieri, Giulia & Pirino, Davide, 2020. "Statistical inferences for price staleness," Journal of Econometrics, Elsevier, vol. 218(1), pages 32-81.
    14. Mark Podolskij & Katrin Wasmuth, 2013. "Goodness-of-fit testing for fractional diffusions," Statistical Inference for Stochastic Processes, Springer, vol. 16(2), pages 147-159, July.
    15. Gärtner, Kerstin & Podolskij, Mark, 2015. "On non-standard limits of Brownian semi-stationary processes," Stochastic Processes and their Applications, Elsevier, vol. 125(2), pages 653-677.
    16. Kolokolov, Aleksey & Livieri, Giulia & Pirino, Davide, 2018. "Statistical inferences for price staleness," SAFE Working Paper Series 236, Leibniz Institute for Financial Research SAFE.
    17. Yuta Koike & Zhi Liu, 2019. "Asymptotic properties of the realized skewness and related statistics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(4), pages 703-741, August.
    18. Ulrich Hounyo, 2014. "Bootstrapping integrated covariance matrix estimators in noisy jump-diffusion models with non-synchronous trading," CREATES Research Papers 2014-35, Department of Economics and Business Economics, Aarhus University.
    19. Mikkel Bennedsen & Ulrich Hounyo & Asger Lunde & Mikko S. Pakkanen, 2016. "The Local Fractional Bootstrap," CREATES Research Papers 2016-15, Department of Economics and Business Economics, Aarhus University.
    20. repec:hum:wpaper:sfb649dp2013-029 is not listed on IDEAS
    21. Bibinger, Markus & Vetter, Mathias, 2013. "Estimating the quadratic covariation of an asynchronously observed semimartingale with jumps," SFB 649 Discussion Papers 2013-029, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.

    More about this item

    Keywords

    Power variation; limit theorems; moving averages; fractional processes; stable convergence; high frequency data;
    All these keywords.

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aah:create:2015-56. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.econ.au.dk/afn/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.