IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v14y2001i3d10.1023_a1017588905727.html
   My bibliography  Save this article

Central Limit Theorems for Level Functionals of Stationary Gaussian Processes and Fields

Author

Listed:
  • Marie F. Kratz

    (Université Paris I & U.F.R. de Mathématiques et Informatique, Université René Descartes, Paris V)

  • José R. León

    (Universidad Central de Venezuela)

Abstract

We introduce a general method, which combines the one developed by authors in 1997 and one derived from the work of Malevich,(17) Cuzick(7) and mainly Berman,(3) to provide in an easy way a CLT for level functionals of a Gaussian process, as well as a CLT for the length of a level curve of a Gaussian field.

Suggested Citation

  • Marie F. Kratz & José R. León, 2001. "Central Limit Theorems for Level Functionals of Stationary Gaussian Processes and Fields," Journal of Theoretical Probability, Springer, vol. 14(3), pages 639-672, July.
  • Handle: RePEc:spr:jotpro:v:14:y:2001:i:3:d:10.1023_a:1017588905727
    DOI: 10.1023/A:1017588905727
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/A:1017588905727
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/A:1017588905727?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kratz, Marie F. & León, JoséR., 1997. "Hermite polynomial expansion for non-smooth functionals of stationary Gaussian processes: Crossings and extremes," Stochastic Processes and their Applications, Elsevier, vol. 66(2), pages 237-252, March.
    2. Breuer, Péter & Major, Péter, 1983. "Central limit theorems for non-linear functionals of Gaussian fields," Journal of Multivariate Analysis, Elsevier, vol. 13(3), pages 425-441, September.
    3. Imkeller, Peter & Perez-Abreu, Victor & Vives, Josep, 1995. "Chaos expansions of double intersection local time of Brownian motion in and renormalization," Stochastic Processes and their Applications, Elsevier, vol. 56(1), pages 1-34, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shevchenko, Radomyra & Todino, Anna Paola, 2023. "Asymptotic behaviour of level sets of needlet random fields," Stochastic Processes and their Applications, Elsevier, vol. 155(C), pages 268-318.
    2. Marie Kratz & Sreekar Vadlamani, 2018. "Central Limit Theorem for Lipschitz–Killing Curvatures of Excursion Sets of Gaussian Random Fields," Journal of Theoretical Probability, Springer, vol. 31(3), pages 1729-1758, September.
    3. Tudor, Ciprian A. & Zurcher, Jérémy, 2024. "The spatial sojourn time for the solution to the wave equation with moving time: Central and non-central limit theorems," Stochastic Processes and their Applications, Elsevier, vol. 172(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Naitzat, Gregory & Adler, Robert J., 2017. "A central limit theorem for the Euler integral of a Gaussian random field," Stochastic Processes and their Applications, Elsevier, vol. 127(6), pages 2036-2067.
    2. Nicolaescu, Liviu I., 2017. "A CLT concerning critical points of random functions on a Euclidean space," Stochastic Processes and their Applications, Elsevier, vol. 127(10), pages 3412-3446.
    3. Kerstin Gärtner & Mark Podolskij, 2014. "On non-standard limits of Brownian semi-stationary," CREATES Research Papers 2014-50, Department of Economics and Business Economics, Aarhus University.
    4. Nourdin, Ivan & Peccati, Giovanni & Podolskij, Mark, 2011. "Quantitative Breuer-Major theorems," Stochastic Processes and their Applications, Elsevier, vol. 121(4), pages 793-812, April.
    5. Debashis Mondal & Donald Percival, 2010. "Wavelet variance analysis for gappy time series," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(5), pages 943-966, October.
    6. Surgailis, Donatas & Teyssière, Gilles & Vaiciulis, Marijus, 2008. "The increment ratio statistic," Journal of Multivariate Analysis, Elsevier, vol. 99(3), pages 510-541, March.
    7. Bai, Shuyang & Taqqu, Murad S., 2019. "Sensitivity of the Hermite rank," Stochastic Processes and their Applications, Elsevier, vol. 129(3), pages 822-840.
    8. Bai, Shuyang & Taqqu, Murad S. & Zhang, Ting, 2016. "A unified approach to self-normalized block sampling," Stochastic Processes and their Applications, Elsevier, vol. 126(8), pages 2465-2493.
    9. Marco Dozzi & Yuliya Mishura & Georgiy Shevchenko, 2015. "Asymptotic behavior of mixed power variations and statistical estimation in mixed models," Statistical Inference for Stochastic Processes, Springer, vol. 18(2), pages 151-175, July.
    10. Shuyang Bai & Murad S. Taqqu, 2013. "Multivariate Limit Theorems In The Context Of Long-Range Dependence," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(6), pages 717-743, November.
    11. Zhao, Zhibiao & Wu, Wei Biao, 2007. "Asymptotic theory for curve-crossing analysis," Stochastic Processes and their Applications, Elsevier, vol. 117(7), pages 862-877, July.
    12. Yan, Litan & Shen, Guangjun, 2010. "On the collision local time of sub-fractional Brownian motions," Statistics & Probability Letters, Elsevier, vol. 80(5-6), pages 296-308, March.
    13. Bojdecki, Tomasz & Gorostiza, Luis G., 1995. "Self-intersection local time for Gaussian '(d)-processes: Existence, path continuity and examples," Stochastic Processes and their Applications, Elsevier, vol. 60(2), pages 191-226, December.
    14. Uemura, H., 2008. "Generalized positive continuous additive functionals of multidimensional Brownian motion and their associated Revuz measures," Stochastic Processes and their Applications, Elsevier, vol. 118(10), pages 1870-1891, October.
    15. Miguel A. Arcones, 1999. "The Law of the Iterated Logarithm over a Stationary Gaussian Sequence of Random Vectors," Journal of Theoretical Probability, Springer, vol. 12(3), pages 615-641, July.
    16. Ivan Nourdin & David Nualart, 2010. "Central Limit Theorems for Multiple Skorokhod Integrals," Journal of Theoretical Probability, Springer, vol. 23(1), pages 39-64, March.
    17. Giraitis, Liudas & Robinson, Peter M. & Surgailis, Donatas, 1999. "Variance-type estimation of long memory," Stochastic Processes and their Applications, Elsevier, vol. 80(1), pages 1-24, March.
    18. Nourdin, Ivan & Nualart, David & Peccati, Giovanni, 2021. "The Breuer–Major theorem in total variation: Improved rates under minimal regularity," Stochastic Processes and their Applications, Elsevier, vol. 131(C), pages 1-20.
    19. Jan Gairing & Peter Imkeller & Radomyra Shevchenko & Ciprian Tudor, 2020. "Hurst Index Estimation in Stochastic Differential Equations Driven by Fractional Brownian Motion," Journal of Theoretical Probability, Springer, vol. 33(3), pages 1691-1714, September.
    20. Pilipauskaitė, Vytautė & Surgailis, Donatas, 2017. "Scaling transition for nonlinear random fields with long-range dependence," Stochastic Processes and their Applications, Elsevier, vol. 127(8), pages 2751-2779.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:14:y:2001:i:3:d:10.1023_a:1017588905727. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.