IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v115y2005i2p339-358.html
   My bibliography  Save this article

Uniform CLT for empirical process

Author

Listed:
  • Ben Hariz, Samir

Abstract

Empirical processes indexed by classes of functions based on dependent observations are considered. Sufficient conditions in order to satisfy stochastic equicontinuity are given. The derived conditions are in terms of bracketing numbers with respect to a norm arising from a Rosenthal type moment inequality satisfied by the process. The application involves mixing sequences and improves on the result of Andrews and Pollard (Int. Statist. Rev. 62 (1) (1994) 119) for strong mixing, Shao and Yu (Ann. Probab. 24 (4) (1996) 2098) for [rho]-mixing sequences, and Csörgo and Mielniczuk (Probab. Theory Relat. Fields 104 (1) (1996) 15) for functions of Gaussian sequences.

Suggested Citation

  • Ben Hariz, Samir, 2005. "Uniform CLT for empirical process," Stochastic Processes and their Applications, Elsevier, vol. 115(2), pages 339-358, February.
  • Handle: RePEc:eee:spapps:v:115:y:2005:i:2:p:339-358
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(04)00141-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Breuer, Péter & Major, Péter, 1983. "Central limit theorems for non-linear functionals of Gaussian fields," Journal of Multivariate Analysis, Elsevier, vol. 13(3), pages 425-441, September.
    2. Andrews, Donald W K, 1994. "Asymptotics for Semiparametric Econometric Models via Stochastic Equicontinuity," Econometrica, Econometric Society, vol. 62(1), pages 43-72, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jean-Jacques Forneron, 2019. "A Sieve-SMM Estimator for Dynamic Models," Papers 1902.01456, arXiv.org, revised Jan 2023.
    2. Jean‐Jacques Forneron, 2023. "A Sieve‐SMM Estimator for Dynamic Models," Econometrica, Econometric Society, vol. 91(3), pages 943-977, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kerstin Gärtner & Mark Podolskij, 2014. "On non-standard limits of Brownian semi-stationary," CREATES Research Papers 2014-50, Department of Economics and Business Economics, Aarhus University.
    2. Whang, Yoon-Jae & Linton, Oliver, 1999. "The asymptotic distribution of nonparametric estimates of the Lyapunov exponent for stochastic time series," Journal of Econometrics, Elsevier, vol. 91(1), pages 1-42, July.
    3. Andrews, Donald W K, 2001. "Testing When a Parameter Is on the Boundary of the Maintained Hypothesis," Econometrica, Econometric Society, vol. 69(3), pages 683-734, May.
    4. Miller, Steve & Startz, Richard, 2019. "Feasible generalized least squares using support vector regression," Economics Letters, Elsevier, vol. 175(C), pages 28-31.
    5. Undral Byambadalai & Tatsushi Oka & Shota Yasui, 2024. "Estimating Distributional Treatment Effects in Randomized Experiments: Machine Learning for Variance Reduction," Papers 2407.16037, arXiv.org.
    6. Surgailis, Donatas & Teyssière, Gilles & Vaiciulis, Marijus, 2008. "The increment ratio statistic," Journal of Multivariate Analysis, Elsevier, vol. 99(3), pages 510-541, March.
    7. Alexandre Belloni & Victor Chernozhukov & Ivan Fernandez-Val & Christian Hansen, 2013. "Program evaluation with high-dimensional data," CeMMAP working papers CWP77/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    8. Bai, Shuyang & Taqqu, Murad S. & Zhang, Ting, 2016. "A unified approach to self-normalized block sampling," Stochastic Processes and their Applications, Elsevier, vol. 126(8), pages 2465-2493.
    9. Mammen, Enno & Rothe, Christoph & Schienle, Melanie, 2016. "Semiparametric Estimation With Generated Covariates," Econometric Theory, Cambridge University Press, vol. 32(5), pages 1140-1177, October.
    10. Shuyang Bai & Murad S. Taqqu, 2013. "Multivariate Limit Theorems In The Context Of Long-Range Dependence," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(6), pages 717-743, November.
    11. Lewbel, Arthur & McFadden, Daniel & Linton, Oliver, 2011. "Estimating features of a distribution from binomial data," Journal of Econometrics, Elsevier, vol. 162(2), pages 170-188, June.
    12. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey, 2016. "Double machine learning for treatment and causal parameters," CeMMAP working papers 49/16, Institute for Fiscal Studies.
    13. Linton, Oliver & Whang, Yoon-Jae & Yen, Yu-Min, 2016. "A nonparametric test of a strong leverage hypothesis," Journal of Econometrics, Elsevier, vol. 194(1), pages 153-186.
    14. Khan, Shakeeb & Powell, James L., 2001. "Two-step estimation of semiparametric censored regression models," Journal of Econometrics, Elsevier, vol. 103(1-2), pages 73-110, July.
    15. Bravo, Francesco & Chu, Ba M. & Jacho-Chávez, David T., 2017. "Generalized empirical likelihood M testing for semiparametric models with time series data," Econometrics and Statistics, Elsevier, vol. 4(C), pages 18-30.
    16. Xiaohong Chen & Oliver Linton & Ingrid Van Keilegom, 2003. "Estimation of Semiparametric Models when the Criterion Function Is Not Smooth," Econometrica, Econometric Society, vol. 71(5), pages 1591-1608, September.
    17. Chen, Songnian & Khan, Shakeeb & Tang, Xun, 2016. "Informational content of special regressors in heteroskedastic binary response models," Journal of Econometrics, Elsevier, vol. 193(1), pages 162-182.
    18. Dennis Kristensen, 2009. "Semiparametric Modelling and Estimation: A Selective Overview," CREATES Research Papers 2009-44, Department of Economics and Business Economics, Aarhus University.
    19. Agboola, Oluwagbenga David & Yu, Han, 2023. "Neighborhood-based cross fitting approach to treatment effects with high-dimensional data," Computational Statistics & Data Analysis, Elsevier, vol. 186(C).
    20. Florian Gunsilius & Meng Hsuan Hsieh & Myung Jin Lee, 2022. "Tangential Wasserstein Projections," Papers 2207.14727, arXiv.org, revised Aug 2022.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:115:y:2005:i:2:p:339-358. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.